
FUNCTIONAL ANALYSIS

Process Step	Description of Process Step	Input Variables (from other Process Step)	Input KPP	Step Control Variables	Input KPP	Output Variables	Output KPC
1	Combustion of fuel and air mixture.	Fuel, oxygen, ignition source		Oxygen inlet size		Heat energy, Byproducts	
2a	Exhaust	Byproducts		Outlet area		Carbon; Ash; CO2	
2b	Heat transfer to air	Heat Energy		Volume		Heat Energy	
3a	Heat transfer to pot	Heat Energy		Surface area/mass		Hot cooking surface	
3b	Heat transfer to stove	Heat Energy		Surface area/mass		Thermal equilibrium	

MODELING

Ein-Eout=Echange +	Losses										
Energy in				Energy in: woo							
Ein=Mf*Lf-Mc*Hc				Ein=	2670						
Mf = mass of wood				Mf=	0.25						
Lf = lower heating value				Lf=		KJ/kg					
Mc = mass of remain				Mc=	0.05						
Hc = Higher heating v	alue of cha	r		Hc=	34100	KJ/kg					
Energy Out					Energy out:	boiling water					
Eout = Mw*Cp*dT+N	ا*ما				Eout=	908.17					
Mw = initial mass of v					Mw=		kg				
Cp = specific heat of					Cp=		KJ/kgK				
ΔT = change in water		o from initia	l to boiling		ΔT =	82					
Me = mass of water e		e nom mina	ii to boiling		Me=	0.25					
Lv = Latent heat of va		f water			Lv=		KJ/kgK				
			CI .	F . C.			CI .	F (B			
Energy changes $\Delta E = m^*C_p^*\Delta T$			Change in ∆E=	737,89152			Change in ΔE=	n Energy of Po 17.25			
$m = m C_p \Delta I$ m = mass of stove, position											
	JL		m(stove)=				m(pot)=	0.5			
Cp = specific heat	mantur-		Cp(clay)=		KJ/kgK		Cp(pot)=		KJ/kgK		
ΔT = Change in Teme	prature		ΔT =	46	ĸ		ΔT =	75	K		
clay = 0.92 KJ/Kg K	pot (iron) =	0.46 KJ/K	g K								
Convection loss											
$q = hA(T_s-T_\omega)$				Heat loss from	stove conve	ection		Heat loss from	m not conve	ction	
q = Heat transfer					327.6				272.6		
•		rr _ : /		q=				q=			
h = Convection heat t	ranster coef	nicient		h=		W/m ²		h=		W/m ²	
A = Surface Area				A=	0.252			A=	0.145		
Ts = Surface tempera				T(surface) =	344			T(surface) =	373		
T∞ = ambient fluid (ai	r) temperati	ıre		T(air) =	279			T(air) =	279		
t = duration of burn				t=	600			t=	600		
Radiation loss				Estoveconv =	196.56	KJ		Epotconv=	163.56	KJ	
$q = (\varepsilon \sigma T_s^4 - \alpha \sigma T_{\omega}^4)A$						om stove radia				om pot radiati	
q = heat transfer					q=	85.13680209			q=	33.89306708	
σ = Stefan-Boltzmann					σ=	5.6703E-08	W/m²K⁴		σ=	5.6703E-08	W/m ² K ⁴
		Brick, Fire			α =	0.75			α =	0.31	
		Brick, Fire	clay=.75		ε =	0.75			e =	0.31	
T _s = Surface temperat	ture				T(surface) =	344	K		T(surface) =	373	K
T _∞ = Ambient fluid (air) temperati	ıre			T(air) =	279	K		T(air) =	279	K
A = Surface Area	-				A=	0.252	m ²		A=	0.145	m ²
t = duration of burn					t=	600	S		t=	600	S
					Estoverad=	51.08208126	KJ		Estoverad=	20.33584025	KJ
Heat loss to air				Air Loss							
q=m dot*Cp*(T2-T1)				q=	1.422	KJ/s					
m dot=mass flow rate				m dot=	0.006			İ			
				T2=	516	-					
T2=temperature of air				T1=	279						
T2=temperature of air T1=temperature of air	at inlet			Cp=		KJ/KgK					
T1=temperature of air											
						S					
T1=temperature of air				t= Eair=	600 853.2						
T1=temperature of air Cp=specific heat of air	Γ			t= Eair=	600 853.2						
T1=temperature of air Cp=specific heat of air Ein-Eout = Estovecor	Γ	nd+Epancor	nv+Epanrad	t= Eair=	600 853.2						
T1=temperature of air Cp=specific heat of air	Γ	nd+Epancor	nv+Epanrad	t= Eair=	600 853.2						
T1=temperature of air Cp=specific heat of air Ein-Eout = Estovecor	r nv+Estovera from wood			t= Eair=	600 853.2						
T1=temperature of air Cp=specific heat of air Cp=specific heat of air Ein-Eout = Estovecor h = Eout/Ein Change in Energy: Ein-Eout = 1761.83	r nv+Estovera from wood KJ	Ein and wa	ater Eout	t= Eair= +ΔEstove+ΔEpa	600 853.2 in						
T1=temperature of air Cp=specific heat of air Ein-Eout = Estovecor h = Eout/Ein Change in Energy:	r nv+Estovera from wood KJ Due to los	Ein and wa	ater Eout ergy chang	t= Eair= +ΔEstove+ΔEpa e of pot and stov	600 853.2 in	KJ					
T1=temperature of air Cp=specific heat of air Ein-Eout = Estovecor h = Eout/Ein Change in Energy: Ein-Eout = 1761.83 Change in energy:	r nv+Estovera from wood KJ Due to los d+Epancon	Ein and wa	ater Eout ergy chang	t= Eair= +ΔEstove+ΔEpa e of pot and stov	600 853.2 in	KJ					

DFMEA

Line No:	Device Function	System, subsystem, or Part Description	System, Subsystem, or Part Function	Potential Failure Mode	Potential Failure Effects	S V	Root Cause	000	Current Design Evaluation or Control	D E	ασz	Actions Recommended	Resp.
Line No:	What are the primary functions of the device?	What is the system, subsystem or part under evaluation?	What is the Function Provided by the system, subsystem or parf?	In what ways does this function lose its functionality?	What is the impact to the the Customer? (internal or external)	How Severe is the effect from suspension of the cusotmer?	What root cause of the loss of familiar foot function?	How often does the root cause or failure mode occur?	What are the tests, methods or techniques to discover the root cause before design release?	noy neal lew woH elect cause or failure Sebom		What are the actions for reducing the occurrance of the Casas, or unproving detection? Should have actions only on high RPN's or easy fixes.	Whose Responsible for the recommended action?
1	Combustion		Provides heat	Doesn't burn	No heat	7	No air, fuel, or ignition	3	Combustion test	1	21		
2		Air Intake	Provides air to fire	Doesn't burn	No heat	7	Constriction or blockage	-	Geometric analysis	3	21		
3		Fuel intake	Provides fuel to fire	Doesn't burn	No heat	7	Lack of fuel, poor flamability	-	Flamability test	+	7		
4		Ignition	Ignites fuel	Doesn't burn	No heat	7	No access to fuel, lack of ignition source	-	Geometric analysis, research current ignition methods	+	7		
5	Exhaust		Removes byproducts	Doesn't remove byproducts	Puts out fire	7	Constriction or blockage, ability to remove ashes	3	Performance test	3	63		
9		Ash removal	Removes ash from fuel	Doesn't remove byproducts	Puts out fire	7	Limited access to ashes	3	Geometric analysis	3	63		
7		Exhaust leaving the top	Expells CO ₂ and airborn ashes	Doesn't remove byproducts	Puts fire out	7	Gap between stove and pot	-	Geometric analysis	6	21		
8	Heat Transfer		Transfer heat from combustion to pot	No heat transfer	No hot cooking surface	6	Loss of heat to stove or surroundings	3	Efficiency test	3	81		
6		Heat transfer to air	Heats up air within stove	No heat transfer to air	No heat to cook food	7	Fuel doesn't burn	3	Heat transfer test	3	63		
10		Heat transfer from air to pot	Hot air heats up pot	Too little or no heat transfer to pot	Doesn't cook food	7	Size of chimney; gap between pot and stove; lack of combustion	9	Geometric analysis; pot temperature test	3	105	Conduct further research on geometric relationships to heat transfer	
11		Heat transfer from air to stove	Hot air heats stove	Too much heat lost to stove	Decreases heat output to pot	7	Material composition; wall thickness; insulation properties	33	Material/ insulation thermal test	1	21		
12		Heat transfer to surroundings	Hot air, stove, and pot heat up surroundings	Too much heat lost to surroundings	Decreases heat output to pot	33	Pan stove gap, material compostion, air/fuel inlet sizes; chimney size	65	Efficiency test	9	45		
13	Safety		Keeps user safe	Risk of injury to user	User gets injured	10	Contact with the hot flame or surface; dangerous ignition methods	es .	Operations/safety test	.03	06		
14		Ignition	Ignites fuel	Method is not safe	User gets injured	10	Difficult to access fuel; use of an accelerant	3	Ignition test	1	30		
15		Stove walls	Keeps flames enclosed within stove	Flames are exposed	User gets injured	10	Walls have failure; holes in walls; stove outlet is too large	3	Geometric analysis	-	30		
16	Portability		Easy to maneuver stove	If it is hard to move the stove	Tough to handle	7	No handles, heavy, large size	e	Portability test	က	63		
17		Handles	Easy to maneuver stove	If the user can't use the handles	Tough to handle	ري ب	High temperature of material or if handles break off	m	Thermal test of materials used; strength test on the joints where the handle is connected to stove	9	75	Use a low thermal conductive material for safety reasons	
18		Light weight/ minimal materials	Easy to maneuver stove	Stove is not light weight	Tough to handle	9	Use of heavy materials or the need of thicker walls for added strength	3	Weight test, weigh the stove to determine its weight	1	15		
19		Small size	Easy to maneuver stove	Stove is large	Tough to handle	ю	Tall chimney/ large diameter for increased efficiency	3	Measure the dimensions of stove	-	6		
20	Structure		Strength to support a pot	Doesn't support a pot	Stove is useless	7	Poor material strength/ structural design	9	Geometric analysis; material strength test	3	105	Angled brick design for weight support; use high strength clay	
21		Composition of materials	Toughness	Cracking	Doesn't support a pot	5	Poor composition	5	Material research, Composition testing	3	75		
22		Side walls	Lean together	Don't stand up/ walls crumble	Doesn't support a pot	7	Bad angles; wall thickness	3	Geometric analysis	3	63		
23		Base plates	Contains side walls	Sides slipping out	Doesn't support a pot	7	Grooves are too shallow	3	Geometric analysis	3	63		
24		Fuel inlet plate	Supports itself	Legs break off	Doesn't support a pot	7	Small features	9	Geometric analysis	3	105	Find a new method for fuel inlet	