SILICATES

- Tectosilicates

Name	Idealized composition	Functional importance
Quartz	SiO ₂	Single most common mineral in soil, often accounting for 50%
		or more of the total dry weight. Normally sand and silt sized.
		No chemical charge, no shrink-swell. Surface area of 1 m ² /g
Opal	SiO ₂ *2H ₂ O	Hydrated form of silica. Normally sand and especially silt
		sized. No chemical charge, no shrink-swell. Surface area of 1
		m ² /g. Prescence generally indicates either volcanic ash or
		plant-created phytoliths.
Orthoclase	KSi ₃ AlO ₈	Weatherable feldspar that releases the macronutrient K+.
		Normally sand and silt sized. No chemical charge, no shrink-
		swell. Surface area of 1 m ² /g.
Anorthite	CaSi₃AlO ₈	Weatherable feldspar that releases the macronutrient Ca ²⁺ .
		Normally sand and silt sized. No chemical charge, no shrink-
		swell. Surface area of 1 m ² /g.
Albite	NaSi ₃ Al ₂ O ₈	Weatherable feldspar that releases Na+. Normally sand and silt
		sized. No chemical charge, no shrink-swell. Surface area of 1
		m^2/g .

- Phyllosilicates

Name	Idealized composition	Functional importance
Muscovite	K(Si _{3.0} Al _{1.0})(Al _{2.0})O ₁₀ (OH) ₂	Weatherable dioctahedral mica that will convert into illite as it releases K ⁺ . Often silt and sand sized, occasionally clay sized. No shrink-swell. Low surface area 3 m ² /g
Biotite	K(Si _{4.0})(Mg _{3.0})O ₁₀ (OH) ₂	Weatherable trioctahedral mica releases K ⁺ . Often silt and sand sized, occasionally clay sized. No shrink-swell. Low surface area 3 m ² /g
Illite	K _{0.8} (Si _{3.2} Al _{0.8})(Al _{2.0})O ₁₀ (OH) ₂	Commonly coarse clay sized, especially coarse clay sized, with CEC in the range of 10 to 40 cmol _c kg ⁻¹ . No shrinkswell and moderate surface area (e.g., 50 m ² /g)
Vermiculite	X _{0.7} (Si _{3.3} Al _{0.7})(Al _{2.0})O ₁₀ (OH) ₂	Commonly clay sized with CEC in the range of 100 to 200 cmol _c kg ⁻¹ . Moderate shrink-swell and very high surface area (e.g., 700 m ² /g). Can have K ⁺ -fixation and/or NH ⁴⁺ -fixation.
Smectite (Beidellite)	X _{0.4} (Si _{3.6} Al _{0.4})(Al _{2.0})O ₁₀ (OH) ₂	Commonly fine clay sized with CEC in the range of 60 to 140 cmol _c kg ⁻¹ . Huge shrink-swell and moderate to high surface area (e.g., 250 m ² /g). Layer charge is in the tetrahedral sheet.
Smectite (Montmorilloni te)	X _{0.4} (Si ₄)(Al _{1.6} Mg _{0.4})O ₁₀ (OH) ₂	Commonly fine clay sized with CEC in the range of 60 to 140 cmol _c kg ⁻¹ . Huge shrink-swell and moderate surface area (e.g., 250 m ² /g). Layer charge is in the octahedral sheet.
Chlorite	X0.2(Si _{3.6} Al0 _{.2})(Mg ₃)O ₁₀ (OH) ₂	Commonly clay sized with CEC in the range of 10 to 40 cmol _c kg ⁻¹ . No shrink-swell. Moderate surface area (e.g., 30 m ² /g). Chlorite is a trioctahedral mineral akin to biotite.
Kaolinite	Si ₂ Al ₂ O5(OH)4	Commonly clay sized with CEC in the range of 1 to 10 cmol _c kg ⁻¹ . No shrink-swell. Moderate surface area (e.g., 30 m ² /g).

CARBONATES, SULFATES, & PHOSPHATES

Name	Idealized composition	Functional importance
Calcite	CaCO₃	Commonly sand and silt sized soluble mineral that readily releases the Ca ²⁺ . Ground calcite (aka, "ag lime") is routinely added to acidic soils in order to raise the soil pH.
Dolomite	CaMg(CO ₃) ₂	Commonly sand and silt sized soluble mineral that readily releases the Ca ²⁺ and Mg ²⁺ . Ground dolomite (aka, "dolomitic lime") is routinely added to acidic soils in order to raise the soil pH.
Siderite	FeCO ₃	Commonly sand and silt sized soluble mineral that readily releases the Fe2+ or Fe3+ depending on redox conditions in the soil.
Gypsum	CaSO ₄ *nH ₂ O	Highly soluble sand and silt sized mineral that readily releases two critical plant nutrients, Ca ²⁺ and SO4 ²⁻ . No shrink-swell. Little surface area.
Apatite	Ca ₅ (PO ₄) ₃ (F,Cl)	Low solubility sand and silted sized mineral that is the only natural occurring mineral source of PO ₄ -3 in soils. No shrink-swell. Little surface area.

OXIDES & HYDROXIDES

Name	Idealized composition	Functional importance
Goethite	FeO(OH)	Goethite is the most common oxide mineral in soils. It is frequently a weathering product formed when free Fe ⁺² precipitates into Fe ³⁺ during a soil oxidation reaction. Goethite can have pH-dependent CEC and AEC in the range of 0 to 5 cmol _c kg ⁻¹ . No shrink-swell. Moderate to high surface area (e.g., 60 to 200 m ² /g).
Hematite	Fe ₂ O ₃	Hematite is a common oxide mineral in soils that forms during organic matter decomposition. Hematite can have pH-dependent CEC and AEC in the range of 0 to 5 cmol _c kg ⁻¹ . No shrink-swell. Moderate to high surface area (e.g., 100 to 200 m ² /g).
Ferrihydrite	Fe ₅ O ₈ H*nH ₂ O	Ferrihydrite is a poorly crystalized iron oxide that has poorly understood but significant ion exchange and surface area. No shrink-swell.
Corundum	Al ₂ O ₃	Corundum is entirely inherited from parent materials and generally considered pedogenically non-reactive. No CEC, no shrink-swell, low surface area.
Gibbsite	AI(OH) ₃	Gibbsite accumulates in soils that have weathering of aluminosilicates and extremely high leaching losses – i.e., the Al doesn't leave the soil even as other cations do. Gibbiste can have pH-dependent CEC and AEC in the range of 0 to 10 cmol _c kg ⁻¹ . No shrink-swell. Low surface area (e.g., 5 to 10 m ² /g).