
Quantitative Genetics for 
Plant Breeding 

Walter Suza (Editor); Kendall Lamkey (Editor); William Beavis; Katherine 
Espinosa; Mark Newell; and Anthony Assibi Mahama 

Iowa State University Digital Press 
Ames, Iowa 



Quantitative Genetics for Plant Breeding Copyright © by Walter Suza (Editor); Kendall Lamkey (Editor); William Beavis; Katherine 
Espinosa; Mark Newell; and Anthony Assibi Mahama is licensed under a Creative Commons Attribution-NonCommercial 4.0 
International License, except where otherwise noted. 

You are free to copy, share, adapt, remix, transform, and build upon the material, so long as you follow the terms of the license. 

How to cite this publication: 

Suza, W., & Lamkey, K. (Eds.). (2023). Quantitative Genetics for Plant Breeding. Iowa State University Digital Press. 

This is a publication of the 
Iowa State University Digital Press 
701 Morrill Rd, Ames, IA 50011 
https://www.iastatedigitalpress.com 
digipress@iastate.edu 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.iastatedigitalpress.com/
mailto:digipress@iastate.edu


Contents 

About the PBEA Series ix 

Chapter 1: Gene Frequencies 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Allelic and Genotypic Variation 2 

Hardy-Weinberg Equilibrium 7 

Factors Affecting Allele Frequency 10 

Selection 13 

References 20 

1 

Chapter 2: Linkage 
William Beavis and Anthony Assibi Mahama 

Disequilibrium 21 

Dissipation of Disequilibrium 25 

Chi-Square Statistic 27 

References 27 

21 

Chapter 3: Resemblance Between Relatives 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Background 29 

Coefficient of Inbreeding 29 

Coefficient of Parentage 32 

Self Pollination 33 

Full-Sibing 39 

References 39 

28 



Chapter 4: Measures of Similarity 
William Beavis; Mark Newell; and Anthony Assibi Mahama 

Population Structure Based on Pedigree Information 41 

Population Structure Based on Markers 42 

Measures of Distance 43 

Principal Component Analysis 44 

Cluster Analysis 47 

Hierarchical Clustering 49 

41 

Chapter 5: Gene Effects 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

Linear Models for Phenotypic Values 51 

Average Genetic (Allelic) Effects 58 

Breeding Value 60 

Epistasis 64 

Single Locus Genotype 67 

References 70 

51 

Chapter 6: Components of Variance 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

Phenotypic Components of Variance 72 

Genetic Components of Variance 74 

Deriving Variance Components 77 

Influence of Epistasis 81 

References 85 

71 



Chapter 7: Estimates of Variance 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

Covariance of Relatives 86 

F2 and F3 Progenies 89 

Bi-Parental Progenies 93 

Using the Algorithm 95 

References 100 

86 

Chapter 8: Mating Designs 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Design Setup 103 

Diallel Crosses 103 

F-Tests 106 

Gardner and Eberhart Diallel Analysis II 108 

North Carolina Design I 113 

North Carolina Design II 116 

North Carolina Design III 120 

F-Tests 121 

References 122 

102 

Chapter 9: Selection Response 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Underlying Theory of Selection 123 

Heritability on an Entry-Mean Basis 127 

Family Structure 129 

Method of Moments 133 

References 135 

123 



Chapter 10: G x E 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

Environmental Components of Variance 136 

Simple Types of GxE Interactions 139 

Complex Types of GxE Interactions 142 

Partition of GxE Variances 146 

Interaction Components 147 

Flux between Genotypic Variance and GE Interaction Variance 151 

References 153 

136 

Chapter 11: Multiple Trait Selection 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Index Selection 155 

Expected Genetic Gains 160 

Construction of a Selection Index 165 

Selection Index Efficiency 169 

References 171 

155 

Chapter 12: Multi Environment Trials: Linear Mixed Models 
William Beavis and Anthony Assibi Mahama 

Henderson’s Concept 172 

BLUEs and BLUPs 176 

Linear Mixed Model Solution 178 

Reference 179 

172 

Chapter 13: Simulation Modeling 
William Beavis and Anthony Assibi Mahama 

History of Simulations 181 

Genetic Architecture of the Trait 184 

Polygenic Trait Simulation 188 

QTL Simulations 189 

References 190 

180 



Plant Breeding Basics 
William Beavis and Anthony Assibi Mahama 

Defining Plant Breeding 191 

A Brief History of Quantitative Genetics 195 

Trait Measures 197 

Types of Models 199 

Installation of R 213 

Analysis of Covariance 234 

Computational Considerations 237 

Matrix Algebra 238 

References 242 

191 

Applied Learning Activities 

Chapter 1 244 

Chapter 2 244 

Chapter 3 244 

Chapter 4 244 

Chapter 5 245 

Chapter 6 245 

Chapter 7 245 

Chapter 8 245 

Chapter 9 246 

Chapter 10 246 

Chapter 11 246 

Chapter 12 247 

Chapter 13 247 

Plant Breeding Basics 247 

244 



Contributors 

Editors 248 

Chapter Authors 248 

Contributors 249 

248 



About the PBEA Series 

Background 

The Plant Breeding E-Learning in Africa (PBEA) e-modules were originally developed as part of 
the Bill & Melinda Gates Foundation Contract No. 24576. 

Building on Iowa State University’s expertise with online plant breeding education, the PBEA e-
modules were developed for use in curricula to train African students in the management of crop 
breeding programs for public, local, and international organizations. Collaborating with faculty 
at Makerere University in Uganda, University of KwaZulu-Natal in South Africa, and Kwame 
Nkrumah University of Science and Technology in Ghana, our team created several e-modules 
that hone essential capabilities with real-world challenges of cultivar development in Africa 
using Applied Learning Activities. Our collaboration embraces shared goals, sharing knowledge 
and building consensus. The pedagogical emphasis on application produces a coursework-
intensive MSc program for Africa. 

• PBEA Project Director: Walter Suza 
• Original Module Coordinator:  William Beavis 
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Sarkodie-Addo, Paul Shanahan, Husein Shimelis, Julia Sibiya, Pangirayi Tongoona, Phinehas 
Tukamuhabwa. 

The authors of this textbook series adapted and built upon the PBEA modules to develop a series 
of textbooks covering individual topic areas. It is our hope that this project will facilitate wider 
dissemination and reuse of the PBEA modules’ content. 

Explore the Series 

• Crop Genetics 
• Quantitative Methods for Plant Breeding 
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• Quantitative Genetics for Plant Breeding 
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Chapter 1: Gene Frequencies 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

The challenge of Quantitative Genetics is to connect traits measured on quantitative scales 
with genes that are inherited and evaluated as discrete units. This challenge was addressed 
through the development of theory between 1918 and 1947. The theory is now referred to as the 
Modern Synthesis and required another 50 years for technological innovations and experimental 
biologists to validate. Luminaries such as RA Fisher, Sewell Wright, JBS Haldane, and John 
Maynard Smith were able to develop the theory that is still widely applied without the benefit 
of high throughput ‘omics’ technologies. Indeed, modern synthesis was developed before the 
knowledge of the structure of DNA. 

Population genetics characterizes how discrete units, i.e., alleles, change in breeding populations. 
Such characterization is the basis for understanding the structure of genomes and breeding 
populations. The forces of mutation (Fig. 1), migration, selection, and drift will alter the structure 
of breeding populations. Herein we will learn how to characterize population structure at one or 
two loci in diploid crop species. This will set the foundation for characterizing structure based 
on any number of loci and for polyploid crops that you may encounter in more advanced courses. 

Learning Objectives 

• Demonstrate the relevance of population genetics concepts to plant breeding populations. 
• Demonstrate the relevance of a purely theoretical Ideal Population to plant breeding 

populations. 
• Demonstrate understanding of the purpose of populations in Hardy-Weinberg Equilibrium 
• Distinguish populations in Hardy-Weinberg Equilibrium from the Ideal Population. 
• Describe the impact of mutation, selection, and drift on breeding populations. 
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Fig. 1 A red Darwin hybrid tulip “Appeldoorn” with a mutation 
resulting in half of one petal being yellow. Photo by LepoRello; 
Licensed under CC BY-SA 3.0 via Wikimedia Commons. 

Allelic and Genotypic Variation 

Ideal Population 

In order to understand the genetic structure of a population, it is necessary to establish a 
standard reference population so that the breeding population can be characterized relative to 
the standard. For this purpose, an ‘ideal’ conceptual base population can be defined as infinitely 
large with the potential to extract finite sub-populations through sampling, such as depicted in 
the following figure and described in Falconer and Mackay (1996): 

Fig. 2 Reference population. Adapted from Falconer and Mackay, 1996. 

Note that the sub-populations depicted in Fig. 2 are based on a genetic sampling process that 
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is affected by the reproductive biology of the species. Unlike animal species, crop species can 
reproduce in a variety of ways: 

• Sexual 
◦ Cross-Pollination 
◦ Self-Pollination 
◦ Mixtures of Self and Cross-pollination 

• Asexual 
◦ Clonal 
◦ Doubled haploids 
◦ Apomixis 

Assumptions 

In the ideal population depicted in Fig. 2, the following assumptions are true: 

1. The base population is infinite or at least too large to count. 
2. There is no migration between sub-populations. 
3. There is no breeding between overlapping generations. 
4. The number of breeding individuals is the same in each subpopulation. 
5. There is random mating within a subpopulation. 
6. There is no Selection. 
7. There is no Mutation. 

Of course, in real populations, these assumptions are violated. 

Allelic and Genotypic Frequencies 

We first model a single locus with only two alleles in an ideal breeding population of diploid 
individuals. Define the following: 

N = number of breeding individuals in a subpopulation (population size) 
t = time usually measured in terms of generations 
q = frequency of one of two alleles at a locus within a subpopulation 
p = 1 – q = frequency of a second allele at a locus within a subpopulation 

 = frequency of a second allele across the subpopulations (the mean of p) 
p0 = frequency of a second allele in the base population 
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Due to the assumptions associated with an ideal reference population,  = q0 at any stage or 
generation of the sampling process, so q0 can be used interchangeably with . 

The alleles, allele frequencies, genotypes, and genotypic frequencies can be represented in Table 
1 and in Equations 1 and 2. 

Table 1 Alleles, allele frequencies, genotypes, and 
genotypic frequencies. 

Alleles  Genotypes 

A a AA Aa aa 

Frequencies p q PAA PAa Paa 

. 

 Sum of allele frequencies. 

. 

 Sum of genotype frequencies, 

where: 
 are as defined earlier, 

 = frequencies of the three genotypes. 

Variance of Allele Frequency 

The relationship between allele frequencies and genotype frequencies can be expressed as in 
Equation 3. 

, 

 Equation for determining allele frequency, 

where: 
 are as defined earlier. 

A particular sub-population is a random sample of N individuals or 2N gametes (for a diploid) 
from the base population. Therefore, the expected gene frequency of a particular allele in the sub-
populations is q0, and the variance of q is represented by Equation 4. 
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. 

 Equation for estimating the variance of an allele, 

where: 
 = the variance of an allele, 
 = the number of individuals. 

Since q0 is a constant, the variance of the change in allele frequency (q1 – q0) is also: 

. 

 Equation for estimating the variance of change in allele frequency, 

where: 

 = the change in allele frequency, 

 are as defined before. 

Frequency Estimators 

In addition to the genetic sampling process depicted in Fig. 2, a statistical sampling process can 
be used to estimate frequencies, variances, and covariances of alleles and genotypes in a sub-
population. If we sample n individuals from a population of size N, then notationally (Equation 
6), 

 Equation for determining the number, n, of individuals and number of A 
individuals in a sample from a population, 

where: 
 = the sample size, 

 are as defined before. 

Estimates of the frequency of the  allele and  genotype in the sample are obtained using 
Equation 7. 
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 Estimating the frequency of A allele and AA genotype in a sample, 

where: 
 = the estimate of the A allele frequency, 

 = the estimate of the AA genotype frequency. 

Expected Number of Alleles 

Recognizing that statistical sampling at a locus with two alleles in a diploid population is 
represented as a binomial random process, the expected number of A alleles and their frequency 
in a sample can be determined using Equation 8. 

 Estimating the expected number of a allele, 

where: 
 = the expectation of the A allele, 

 are as defined previously. 

Thus,  is an unbiased estimator of the population parameter . 

Using the definition of variance, we can likewise find the  and  using 
Equations 9 and 10. All terms have been defined previously. 

 Calculating the variance of n number of the A allele. 

 Calculating the variance of the estimated frequency of the A allele. 

Note that  are usually unknown, so we often substitute  in the 

calculation of the . Also, note that  is not the variance of a Binomial 
distribution. If the population sampled is in Hardy-Weinberg Equilibrium (see below), the 
genetic sampling of alleles will be random so that . The 

variance of the estimated frequency of the A allele can be obtained using Equation 11, which has 
the form of the variance from a binomial distribution. 
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 Alternative equation for calculating the variance of estimated frequency of an 
allele. 

where: 
 are as defined previously. 

Hardy-Weinberg Equilibrium 

The proof of the Hardy Weinberg Equilibrium (HWE) requires the following assumptions 
(Falconer and Mackay, 1996): 

1. Allele frequency in the parents is equal to the allele frequency in the gametes. 

◦ Assumes normal gene segregation. 

◦ Assumes equal fertility of parents. 

2. Allele frequency in gametes is equal to the allele frequency in gametes forming zygotes. 

◦ Assumes equal fertilizing capacity of gametes. 
◦ Assumes a large population. 

3. Allele frequency in gametes forming zygotes is equal to allele frequencies in zygotes. 
4. Genotype frequency in zygotes is equal to genotype frequency in progeny. 

◦ Assumes random mating. 
◦ Assumes equal gene frequencies in male and female parents. 

5. Genotype frequencies in progeny do not alter gene frequencies in progeny. 

◦ Assumes equal viability. 

For a two-allele locus in a population in HWE, . 
HWE at a given genetic locus is achieved in one generation of random mating. Genotype 
frequencies in the progeny depend only on the allele frequencies in the parents and not on the 
genotype frequencies of the parents. 
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Disequilibrium 

As discussed, there are several processes that can force allelic and genotypic frequencies to 
deviate from HWE. Deviations from equilibrium are referred to as disequilibrium and are often 
denoted with a disequilibrium coefficient, D. In the two allele case, the genotypic frequencies can 
be represented as . 

Thus, the disequilibrium coefficient can be estimated using Equation 12. 

. 

 Equation for estimating D. 

where: 
 = the estimate of the disequilibrium coefficient of the A allele, 

 are as defined previously. 

Note that the expectation of  can be obtained from Equation 13. All terms are defined earlier. 

. 

 Equation for estimating D. 

The,  is biased. Although the estimate of  is biased, as the sample size, n, becomes large, 

the bias becomes small. Thus, emphasizing the need for large sample sizes in drawing inferences 
about disequilibrium from Hardy-Weinberg. 

Variance 

The  can likewise be derived as (Equation 14: 

. 

 Equation for estimating the variance of . 

If  is large, , and , a normal distribution. 

So, a standard normal variate,  can be constructed as: 
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. 

 Equation for estimating the standard normal variate, Z. 

Goodness of Fit 

Alternatively, because , therefore Equation 16 allows the calculation of chi-square. 

, 

 Equation for estimating chi-square. 

This form enables the direct use of genotypic counts, , as shown in Table 2. 

Table 2 Representations of observed and expected genotypic counts and differences between the 
counts. 

n/a Genotypes 

n/a AA Aa aa 

Observed (O) 

Expected (E) 

O-E 

The Goodness of Fit Statistic 

Assessing the fit of observed data to expectation can be accomplished by using Equation 17. 

 Formula for calculating chi-square goodness of fit statistic. 

where: 
 = the observed data, 
 = expected data. 
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Non-Random Mating 

Two methods of non-random mating that are important in plant breeding are assortative mating 
and disassortative mating. 

Assortative mating occurs when similar phenotypes mate more frequently than they would by 
chance. One example would be the tendency to mate early x early maturing plants and late x late 
maturing plants. The effect of assortative mating is to increase the frequency of homozygotes and 
decrease the frequency of heterozygotes in a population relative to what would be expected in a 
randomly mating population. Assortative mating effectively divides the population into two or 
more groups where matings are more frequent within groups than between groups. 

Disassortative mating occurs when unlike or dissimilar phenotypes mate more frequently than 
would be expected under random mating. Its consequences are, in general, opposite those of 
assortative mating in that disassortative mating leads to an excess of heterozygotes and a 
deficiency of homozygotes relative to random mating. Disassortative mating can also lead to the 
maintenance of rare alleles in a population. 

Factors Affecting Allele Frequency 

The factors affecting changes in allele frequency can be divided into two categories: systematic 
processes, which are predictable in both magnitude and direction, and dispersive processes, 
which are predictable in magnitude but not direction. The three systematic processes are 
migration, mutation, and selection. Dispersive processes are a result of sampling in small 
populations. 

Migration 

Assume a population has a frequency of m new immigrants each generation, with 1-m being the 
frequency of natives. Let qm be the frequency of a gene in the immigrant population and q0 the 
frequency of the same gene in the native population. Then the frequency in the mixed population 
will be: 

. 

 Formula for calculating the frequency of an allele in a mixed population. 

where: 
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 = the frequency of the allele, 
 are as defined. 

The change in gene frequency brought about by migration is the difference between the allele 
frequency before and after migration. 

. 

 Formula for calculating the change in gene frequency. 

Thus the change in gene frequency from migration is dependent on the rate of migration and the 
difference in allele frequency between the native and immigrant populations. 

Mutations 

Mutations are the source of all genetic variation. Loci with only one allelic variant in a breeding 
population have no effect on phenotypic variability. While all allelic variants originated from 
a mutational event, we tend to group mutational events into two classes: rare mutations and 
recurrent mutations, where the mutation occurs repeatedly. 

Rare Mutations 

By definition, a rare mutation only occurs very infrequently in a population. Therefore, the 
mutant allele is carried only in a heterozygous condition and, since mutations are usually 
recessive, will not have an observable phenotype. Rare mutations will usually be lost, although 
theory indicates rare mutations can increase in frequency if they have a selective advantage. 

Fate of a Single Mutation 

Consider a population of only AA individuals. Suppose that one A allele in the population 
mutates to a. Then there would only be one Aa individual in a population of AA individuals. So, 
the Aa individual must mate with an AA individual, i.e., 
This mating has the following outcomes Li (1976; pp 388): 

1. No offspring are produced, in which case the mutation is lost. 

2. One offspring is produced: the probability of that offspring being  is , so the 

probability of losing the mutation is . 
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3. Two offspring are produced:  can mate with more than one of the  individuals in 
the population, thus if  mates with two  individuals, the probability of both 

offspring being AA is , so the probability of losing the mutation is . 

If  is the number of offspring from the above mating, then the probability of losing the mutation 

among the first generation of progeny is . 

Probability of Loss 

The probability of losing the gene in the second generation can be calculated by making the 
following assumptions: 

• The number of offspring per mating is distributed as a Poisson process (which means that 
they follow a stochastic distribution in which events occur continuously and independently 
of one another). 

• With the average number of offspring per mating = 2. 
• New mutations are selectively neutral. 

With these assumptions, the probabilities of extinction are as in Table 3: 

Table 3 Probability of extinction 
in different generations. 

Generation Probability of Loss 

1 0.37 

7 0.79 

15 0.89 

31 0.94 

63 0.97 

120 0.98 

Recurrent Mutations 

Let the mutation frequencies be: 
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Then the change in gene frequency in one generation at equilibrium is determined using 

Equation 20, where , and . 

. 

 Formula for calculating the change in gene frequency due to mutation. 

where: 
 = the rate of mutation of A to a allele, 
 = the rate of mutation of a to A allele 

Other terms are as defined. 

Conclusions 

• Mutations alone produce very slow changes in allele frequency. 
• Since reverse mutations are generally rare, the general absence of mutations in a population 

is due to selection. 

Selection 

Selection is one of the primary forces that will alter allele frequencies in populations. Selection 
is essentially the differential reproduction of genotypes. In population genetics, this concept 
is referred to as fitness and is measured by the reproductive contribution of an individual (or 
genotype) to the next generation. Individuals that have more progeny are more fit than those who 
have less progeny because they contribute more of their genes to the population. 

The change in allele frequency following selection is more complicated than for mutation and 
migration because selection is based on phenotype. Thus, calculating the change in allele 
frequency from selection requires knowledge of genotypes and the degree of dominance with 
respect to fitness. Selection affects only the gene loci that affect the phenotype under 
selection—rather than all loci in the entire genome—but it also would affect any genes that are 
linked to the genes under selection. 
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Effects of Selection 

Change in allele frequency: The strength of selection is expressed as a coefficient of selection, 
s, which is the proportionate reduction in gametic output of a genotype compared to a standard 
genotype, usually the most favored. Fitness (relative fitness) is the proportionate contribution of 
offspring. 

Partial selection against a completely recessive allele: To see how the change in allele frequency 
following selection is calculated, consider the case of selection against a recessive allele: 

Table 4 Initial genotypic frequencies, coefficient of selection, fitness, and 
gametic contribution by genotypes. 

n/a Genotypes 

n/a AA Aa aa Total 

Initial Frequencies p2 2pq q2 1 

Coefficient of Selection 0 0 s n/a 

Fitness 1 1 1 – s n/a 

Gametic Contribution p2 2pq q2(1 – s) 1 – sq2 

Frequency Equations 

The frequency of allele  after selection is estimated using Equation 21: 

. 

 Formula for calculating the frequency of an allele following selection, 

where: 
 = the selection differential (represented as a deviation from the population mean), 

 are as defined. 

The change in allele frequency is then represented as in Equation: 

. 
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 Formula for calculating the change in allele frequency due to selection. 

where: 
 are as defined. 

In general, you can show that the number of generations, , required to reduce a recessive from a 
frequency of  to a frequency of , assuming complete elimination of the recessive, i.e., 
is (Equation 23): 

 Formula for calculating the number of generations required. 

Small Population Size 

Unlike the three systematic forces that are predictable in both amount and direction, changes 
due to small population size are predictable only in amount and are random in direction. 

The effects of small population size can be understood from two different perspectives. It can be 
considered a sampling process, and it can be considered from the point of view of inbreeding. 
The inbreeding perspective is more interesting, but looking at it from a sampling perspective lets 
us understand how the process works. 

Consequences of small population size 

1. Random genetic drift: random changes in allele frequency within a subpopulation 
2. Differentiation between subpopulations 
3. Uniformity within subpopulations 
4. Increased homozygosity 

Example 1: Let q = 0.5 and N = 50, then 

Example 2: Let q = 0.5 and N = 4, then 
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Inbreeding and Small Populations 

Inbreeding is the mating together of individuals that are related by ancestry. The degree of 
relationship among individuals in a population is determined by the size of the population. This 
can be seen by examining the number of ancestors that a single individual has: 

Table 5 Number of ancestors of an individual in relation to the 
number of generations. 

Generation Ancestors 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

10 1,024 

50 1,125,899,906,842,620 

100 1,267,650,600,228,230,000,000,000,000,000 

t 2t 

Just 50 generations ago, note that a single individual would have more ancestors than the number 
of people that have existed or could exist on earth. 

Therefore, in small populations, individuals are necessarily related to one another. Pairs mating 
at random in a small population are more closely related than pairs mating together in a large 
population. Small population size has the effect of forcing relatives to mate even under random 
mating; thus, with small population sizes inbreeding is inevitable. 

Identical by Descent and Identical by State 

In finite populations, there are two sorts of homozygotes: Those that arose as a consequence 
of the replication of a single ancestral gene — these genes are said to be identical by descent 
(Bernardo, 1996). If the two genes have the same function but did not arise from the replication 
of a single ancestral gene, they are said to be alike in state. It is the production of homozygotes 
that are identical by descent that gives rise to inbreeding in a small population. 
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Coefficient of Inbreeding 

The probability that two genes are identical by descent is called the coefficient of inbreeding 
and will be the measure of the relationship between mating pairs. 

The coefficient of inbreeding (F) refers to the individual and expresses the degree of relationship 
between an individual’s parents. The coefficient of inbreeding is always expressed relative to a 
specified base population. The reference population is assumed to be non-inbred (F=0). 

Consider a base population consisting of N individuals, each shedding equal numbers of gametes 
uniting at random. Because the base is non-inbred, each individual in this population carries 
genes that are non-identical. The only way a homozygote that carries genes that are identical by 
descent can arise is by the mating of a male and female gamete from the same individual that 
carries a replication of the same gene. Because there are 2N gametes, the probability that two 

mating gametes are identical by descent is . 

Equation of Coefficient of Inbreeding 

In the second generation, there are two ways genes are identical by descent can be joined: 

1. by a new replication of the same ancestral gene; and 
2. by the previous replication that occurred in generation 1. 
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The probability of a new replication event is . The remaining proportion of zygotes, 

, carry genes that are independent in origin from generation 1 but may have been 

identical in their origin in generation 0. The probability that the genes are identical by descent 

from generation 1 is the inbreeding coefficient of generation 1 is . 

Therefore, the probability of identical homozygotes in generation 2 is represent in Equation 23: 

, 

 Formula for calculating the probability of identical homozygotes. 

where: 
 = the inbreeding coefficients of generations 1 and progeny generation 

(PG), 
 = the population size. 

The same arguments apply to future generations, so we can write the recurrence equation as 
(Equation 24): 

. 

 Formula for calculating the probability of identical homozygotes in future 
generation. 

where: 
 = the inbreeding coefficients of generation t, 
 = the population size. 

Inbreeding Coefficient 

The inbreeding of any generation is composed of two components: new inbreeding, which arises 
from self-fertilization, and the old, which was already there. 

Note that inbreeding is cumulative and that the absence of inbreeding in generation  does not 
change the fact that a population has inbreeding from prior generations. 

Through a series of algebraic steps, we can write the inbreeding coefficient as a function of the 
number of generations removed from the reference populations (Equation 25): 
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, 

 Formula for calculating the inbreeding coefficient. 

where: 

 is the change in inbreeding coefficients. 

Dispersion 

To relate inbreeding back to population size, we can rewrite the variance of the change in allele 

frequency  as (Equation 26): 

, 

 Alternative formula for calculating the variance of the change in allele 
frequency. 

And also represent the variance of the allele frequency as in Equation 27, 

. 

 Alternative formula for calculating the variance of the allele frequency. 

 expresses the rate of dispersion and  expresses the amount of dispersion. 

Changes in Frequencies 

The genotype frequencies in a population can then be expressed as: 

Table 6 Contribution of inbreeding coefficient F on genotypic frequencies for a two-allele locus case 
(Falconer and Mackay, 1996, p62). 

n/a n/a n/a Origin 

n/a Original Frequencies Change due to 
inbreeding Independent Identical 

AA 

Aa 

Aa 
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The algebra summarizes what is expected to happen “asymptotically”. In any given breeding 
population, the results will vary due to sampling. 
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Chapter 2: Linkage 
William Beavis and Anthony Assibi Mahama 

Plant breeding populations, by definition, employ methods that force populations into states of 
disequilibrium. Plant breeders do not mate infinite (or even large) numbers of parents; thus, drift 
has a major impact on population disequilibrium. They select the parents that will be used in 
mating; thus, selection, linkage, and pleiotropy affect the population structure. New lines from 
external breeding projects are often introduced to the breeding nurseries; thus, migration affects 
the structure of plant breeding populations. After the passage of the Plant Variety Protection Act, 
plant breeders working in the commercial sector began to keep breeding records for purposes of 
protecting intellectual property. An unintended consequence has been the application of linear 
mixed models to produce predictors of performance, originally developed by animal breeders. 
These methods are predicated on the use of coefficients of relationship among cultivars with 
known performance and progeny with unknown or limited information on performance. 

Herein we introduce gametic and linkage disequilibrium as measures of deviation 
(disequilibrium) from Hardy-Weinberg Equilibrium. In other words, the estimation of these 
population parameters is based on a reference population, and the reference population must be 
defined, or else the calculated values have no meaning. 

Learning Objectives 

• Demonstrate understanding that linkage and linkage disequilibrium are properties of 
populations, not individuals. 

• Distinguish gamete from linkage disequilibrium. 
• Demonstrate ability to estimate recombination and disequilibrium statistics. 

Disequilibrium 

The motivation is to ‘map’ genetic loci based on how they are most likely to be inherited relative 
to each other. If alleles at two loci are on the same chromosome in close proximity to each other, 
then they will be inherited together more often than not. It was recognized in the 1920s (Sax, 
1923) that markers could have value for selecting phenotypes that are difficult to assay, but 60 
years passed before the theory could be evaluated on a genome-wide scale. Linkage represents a 
mechanism that results in Disequilibrium among alleles at more than a single locus on the same 
chromosome. It is also possible that Disequilibrium among alleles at more than a single locus 
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can result from mechanisms other than linkage, e.g., selection and drift. Unfortunately, the term 
“linkage disequilibrium” has been applied to all forms of multi-locus disequilibrium. Herein we 
try to use the term “linkage disequilibrium” only for cases where we know alleles are on the same 
chromosome and “gametic disequilibrium” for situations when we do not know whether the loci 
are on the same chromosome. 

Disequilibrium Example 

Consider parent 1 with genotype A1A1B1B1C1C1D1D1 and parent 2 with A2A2B2B2C2C2D2D2. 
Loci A, B, and C are on a homologous chromosome, and D is on a separate chromosome (Fig. 1). 

Fig. 1 A, B, C, and D loci on two pairs of homologous chromosomes. 

The genotype of the F1 generation resulting from the cross between parent 1 and 2 will be 
A1A2 B1B2 C1C2 D1D2. Loci A and D are located on different chromosomes and will segregate 
independently according to the random segregation of chromosomes into gametes. For two 
different alleles at each locus, four possible combinations can occur, each with a chance of 
25%. A and C are unlinked on the same chromosome. They are so far away from each other 
that recombination occurs between them in 50% of the meioses. The frequencies of all gametes 
involving alleles at the A and C locus (A1C1, A1C2, A2C1, A2C2) is 0.25, just as it is for the 
alleles for the A and D loci and the B and D loci. Since locus A and C assort independently, 
the frequency of double homozygous dominant and double homozygous recessive genotypes 
(A1A1C1C1, A2A2C2C2) is 0.25×0.25, and the frequency of double heterozygous genotypes 
(A1A2C1C2) is 0.5 x 0.5. 

Loci A and B are linked because they are located in close proximity on the same chromosome 
resulting in recombination frequencies that are less than 0.5, e.g., 0.1. The difference between the 
expectation for unlinked loci and the estimated recombination frequency can be used to classify 
linkage, i.e., the likelihood of two loci being inherited together. To estimate recombination 
frequencies, non-parental gametes can be counted and divided by the total number of gametes. 
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Gametic Disequilibrium 

Disequilibrium can be created by self-pollination, crossing relatives within a breeding 
population, mutation, drift, selection, and migration. For example, consider alleles at loci A and 
D. Let us assume that each contributes to phenotypic variability in flower initiation in an additive 
manner. Let us also assume selection for earlier flowering (conferred by the A1 and D2 alleles). 
The impact will be a negative covariance between the alleles at loci A and D, which reduces the 
genetic variances and creates disequilibrium between those loci. Even though A1 and D2 alleles 
are physically independent, they become correlated by selection which results in DA1, D2 >0. This 
is also referred to as the Bulmer effect. 

Although individual loci achieve HWE after one generation of random mating, genotype 
frequencies at two or more loci do not achieve equilibrium jointly after one generation of random 
mating. 

To illustrate this point, consider two populations, one consisting entirely of AABB genotypes 
and the other consisting entirely of aabb genotypes. Assume they are mixed equally and allowed 
to mate randomly. The first generation would consist of the three genotypes AABB, AaBb, and 

aabb in the proportions . However, for two loci with two alleles, nine genotypes are 

possible. 

(For n alleles at each locus and k loci, there are  possible genotypes). 

Continued random mating would produce the missing genotypes, but they would not appear at 
the equilibrium frequencies immediately. 
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Disequilibrium Table 

Consider Table 1 below: 

Table 1 Alleles and gametic types, their actual and equilibrium frequencies, and the 
difference between them. 

Alleles A a B b 

Allele 
Frequencies 

n/a n/a n/a n/a n/a 

Gametic Types AB Ab aB ab 

Frequencies at 
Equilibrium 

Actual 
Frequencies R S T U 

Difference 
from 
Equilibrium 

A coupling heterozygote would be  and occur with frequency , and the repulsion 

heterozygote would be  occurring with frequency . If the frequency of these two 

genotypes is equal, the population is in equilibrium, and Equation 1 can be used to estimate the 
disequilibrium coefficient, D: 

. 

 Formula for estimating D. 

where: 
 = the actual gamete frequencies. 

It can be shown that after t generations of random mating, the disequilibrium is given by 
Equation 2: 

. 

 Formula for estimating D after t generations of mating. 
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where: 
 = the disequilibrium in the 0 and t generations, respectively, 

 = the recombination frequency, equals  for independently segregating loci. 

Dissipation of Disequilibrium 

The dissipation of disequilibrium relative to generation 0 is given in the figure below: 

Fig. 2 Dissipation of disequilibrium. 

Deviations from independence at multiple loci are often referred to as linkage disequilibrium, 
even if linkage is not the cause. Unless two loci are known to reside on the same chromosome the 
term Gametic Disequilibrium is a less ambiguous term to describe disequilibrium among loci. 

Estimation and Testing 

Disequilibrium at the A and B loci is a comparison of gametic frequency, , with the product 
of allele frequencies, ; and is estimated with Equation 3, 

 Formula for estimating disequilibrium at two loci. 

where: 
 = the disequilibrium at loci A and B, 

 are as defined previously. 
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The expectation of the estimated disequilibrium between two loci is calculated using Equation 4. 

. 

 Formula for obtaining the expectation of estimated disequilibrium between two 
loci. 

where: 
 are as defined previously. 

The variance of the estimated disequilibrium is calculated using Equation 5. 

. 

 Formula for obtaining the variance of estimated disequilibrium between two loci. 

where: 
 are as defined previously. 

Note the similarities to . Thus, the distribution of estimated disequilibrium between two loci 
approaches a normal distribution (Equation 6). 

 Normal distribution equation of . 

where: 
 are as defined previously. 

The Z statistic can be obtained using Equation 7; 

. 

 Formula for calculating Z statistic for. 

where: 
 are as defined previously. 
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Chi-Square Statistic 

Again, a chi-square statistic for the hypothesis of no disequilibrium can be calculated using 
Equation 8 and Table 2. 

. 

 Formula for calculating chi-square statistic, 

where: 
 are as defined previously. 

Table 2 Arrangement of gametic types, their observed and expected counts for calculating 
chi-square statistic. 

Gamete AB AB AB AB 

Observed 

Expected 
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Chapter 3: Resemblance Between Relatives 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Plant breeding populations, by definition, employ methods that force populations into states of 
disequilibrium. Plant breeders do not mate infinite (or even large) numbers of parents; thus, drift 
has a major impact on population disequilibrium. They select the parents that will be used in 
mating; thus, selection linkage and pleiotropy affect the population structure. New lines from 
external breeding projects are often introduced to the breeding nurseries, thus migration affects 
the structure of plant breeding populations. After the passage of the Plant Variety Protection Act, 
plant breeders working in the commercial sector began to keep breeding records for purposes of 
protecting intellectual property. An unintended consequence has been the application of mixed 
linear models to produce predictors of performance, originally developed by animal breeders. 
These methods are predicated on the use of coefficients of relationship among cultivars with 
known performance and progeny with unknown or limited information on performance. 

Fig. 1 Plant breeding specimens in a lab at Makerere 
University in Uganda. Photo by Iowa State University. 

Learning Objectives 

• Utilize population genetic concepts as a foundation to understand coefficients of inbreeding, 
parentage, and relationship. 

• Calculate coefficients of parentage and inbreeding. 
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Background 

Fig. 2 Fractional relationships in the calculation of coefficients of relationships 
and inbreeding. CC BY-SA 4.0 

The calculation of coefficients of relationships and inbreeding were originally developed as path 
coefficients by Sewall Wright and identity by descent by Gustave Malécot. The calculations 
were simplified by Emik and Terrill (1949) and extended to all possible measures of identity by 
Cockerham (1971). Example relatedness in humans is shown in Fig. 2. 

Herein we introduce inbreeding and parentage as deviations (disequilibrium) from Hardy 
Weinberg Equilibrium. In other words, the calculations of all of these measures are based on a 
reference population and the reference population must be defined or else the calculated values 
have no meaning. 

Coefficient of Inbreeding 

Let us consider a random mating diploid population consisting of  individuals: Because there 
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are  gametes, the probability that two mating gametes are identical by descent is 

. Therefore, . The remaining proportion of zygotes  carry genes that are 

independent in origin from generation 1. Therefore, the probability of identical homozygotes in 
generation 2 is represented by Equation 1: 

, 

 Formula for calculating the probability of identical homozygotes in generation 2. 

where: 
 = the inbreeding coefficients of generations 1 and 2, 

 = the number of individuals in the population. 

where F1 and F2 are the inbreeding coefficients of generations 1 and 2. The same arguments apply 
to future generations, so we can write the recurrence equation as in Equation 2: 

. 

 Formula, the recurrence equation, for calculating the probability of identical 
homozygotes in generation t, 

where: 
 = the inbreeding coefficients of generations t, 
 = the number of individuals in the population. 

The inbreeding of any generation is composed of two components: new inbreeding, which arises 
from self-fertilization, and the “old” that was already there. 

Note that inbreeding is cumulative and that the absence of inbreeding in generation t does not 
change the fact that a population may be inbred relative to prior generations. 

General Principle 

Rather than considering a random mating population, let’s consider a population that is 
experiencing a systematic inbreeding process. In this case, F refers to the proportionate 
reduction in heterozygosity (relative to a population that is in HWE) through inbreeding 
processes. For example, let us consider self-pollination. Begin with an F1 from a cross of two 
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homozygous lines. We can self the F1 to get an F2. How about if we random mate F1? Does this 
create a population in HWE? What is the reference population? 

If F is the proportionate decrease in heterozygosity due to an inbreeding process, then with self-
pollination F can be easily calculated for any generation of selfing as shown in Equation 3: 

. 

 Formula for calculating the proportionate reduction in heterozygosity. 

where: 
 = the generation of interest. 

Impact on Disequilibrium 

The impact on deviations, i.e., disequilibrium, relative to HWE can be summarized as: 

HWE Frequencies Change due to inbreeding. 

AA 

Aa 

Aa 

Alternatively, we can think of the coefficient of inbreeding as the probability of identity by 
descent. In this case, the coefficient of inbreeding is the probability that two alleles at a locus 
in an individual are IBD. For two individuals  and , the relationship is represented in 
Equation 4. 

 Formula for calculating the coefficient of inbreeding (equivalent to IBD). 

where: 
 = the coefficient of inbreeding of x, 
 = the coefficient of inbreeding of y, 

 = probability that a and b and c and d are IBD. 
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Coefficient of Parentage 

What if two homozygous parents of an F1 used to create an F2 population are related? Let us 
think about the relationship, parentage, and co-ancestry between two individual people, dogs, 
corn plants, soybean plants, etc. Refer to these individuals as X and Y. Also, let us use a 
shorthand for a quantitative measure of this relationship. This relationship is also known as the 
coefficient of parentage and is defined as the probability that a random gene from an individual 
X is identical by descent (IBD) with a random allele at the same locus from an individual Y. That 
is, for , the probability of identity by descent is presented in Equation 5. 

. 

 Formula for determining IBD of genes in individuals X and Y. 

where: 
 = the probability that alleles in X and Y are identical by descent, 

 = are as defined previously. 

Historically, this measure has been denoted  or . The inbreeding coefficient of the 
progeny is the coefficient of parentage of the parents. 

Calculations 

ΘX,Y = 1 means that X and Y have the same identical alleles by descent across all loci. What is 
another name for this condition? (twins). ΘX,Y = 0 means what? Is it possible that you and I have 
no alleles that are identical by descent? 

There is a relationship between Fn and ΘX,Y . In an individual, if two alleles at a single locus are 
identical by descent, then this is a special case of ΘX,Y, where X and Y are the same individual, 
i.e., FX = ΘX,X. To return to the original question “What if two homozygous parents of an F1 used 
to create an F2 population are related?” The relationship is represented by Equation 6. 

. 

 Formular for calculating the coefficient of inbreeding in generation n. 

where: 
 = the coefficient of parentage of the parents. 
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Inbreeding Coefficient 

Consider the following pedigree: 

Individual Z has the following probabilities of containing the various alleles (Equation 7): 

, 

 Formula for the probability of individual Z containing various combinations of 
alleles. 

where: 
 and are as defined previously. 

Example Calculations 

What is the probability that the two mating gametes A1A2 x A3A4 at locus A are identical by 
descent in the F1? Assume here that the two parents are not related; that is, 

. 

. 

. 

The probability that the gametes are identical by descent in the F1 = 0.5 

Self Pollination 

The relationship expressed in Equation 7 can be applied in determining the coefficient of 
inbreeding following self-pollination as in Equation 8. That is, . 

, 

, 

, 
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, 

. 

 Alternative formula for calculating Fz. 

where: 
 = the coefficient of inbreeding of individual X. 

Panmictic Index 

Panmictic Index, P, is the probability that two alleles at a locus are not IBD and is related to F 
as, P = 1 − F. We can use the known equations and relationships in the earlier section and with 
substitution of P for the nth generation we can calculate P using Equation 9. 

, 

, 

, 

, 

. 

 Formula for calculating the panmictic index. 

where: 
 = the panmictic index in generation n, 

 = the panmictic index of alleles in z. 

 = the panmictic index in generation 0, 

 = the panmictic index of alleles in X. 

For diploids this is also the percent of heterozygotes at a locus 
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Full-Sib Mating (1) 

Fig.3 and schematic of Full-sib mating design, from generation n to generation n+ 2 

Fig. 3 Full-sib mating design. 

Probability that A & B both receive e from X = 

Probability that A & B both receive f from X = 

Probability that e and f are not IDB = 

Probability that A & B contain an identical allele from X by chance (given that e and f are not IBD) 
= 
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 Formula for calculating probability that an allele in A and B form parent X is 
IBD knowing that alleles e and f in X are not IBD. 

where: 
 = the coefficient of inbreeding of X, i.e., the probability that e and f are IBD. 

Full-Sib Mating (2) 

Probability that e and f are identical = 

Probability A & B receive an identical allele from X (given that e and f are IBD) = 1 

Total probability that A & B receive an identical allele from X, and from Y can be determined 
using Equation 11. 

 Formula for calculating the probability that progenies A and B received identical 
alleles from parents X and Y, 

where: 
 = the probability of identical alleles from either parent, 

 = the coefficient of inbreeding of x, 
 = the coefficient of inbreeding of y. 

Full-Sib Mating (3) 

Let us consider full-sib mating where the relationship between genes in offspring from the two 
parents can be represented by Equation 12. 

 Formula for calculating the probability that a gene from parent X to progeny A, 
and from parent Y to progeny B are IBD. 
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where: 
 are as described below. 

Probability that a gene from X to A and one from Y to B are IBD is . 
Probability that a gene from Y to A and one from X to B are IBD is . 

Full-Sib Mating (4) 

The relationship between X and Y, rxy, could be zero if the reference population from which 
X and Y are sampled is considered to be random mating and large. Note that if the population 
is random mating but is not large, then the relationship coefficient may not be zero. The 
relationship can be represented as in Equation 13. 

 Formula for calculating the relationship between two parents. 

where: 
 have been defined previously. 

In the form represented in Equation 13, notice that the relationship between X and Y is equal to 
the average relationship in the nth generation of random mating and the series of equations in 
Equation 14 shows the relationships in progression. 
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 Formula for calculating the relationship between two parents in different 
generations of random mating. 

where: 
 are as defined previously. 

Self-Pollination 

Assume original population is non-inbred (by definition = F2). Using Equation 9 the relationship 
between the panmictic index and the coefficient of relationship can be calculated for different 
generations of self pollination assuming the original population is non-inbred (by definition = F2) 
(Table 2). Where: 

. 

Table 2 Relationship between panmictic index (P) and coefficient of 
relationship (F) with self-poolination and F2 as original population. 

Generation P F 

0 1.00000000 0.00000000 

1 0.50000000 0.50000000 

2 0.25000000 0.75000000 

3 0.12500000 0.87500000 

4 0.06250000 0.93750000 

5 0.03125000 0.98437500 

6 0.01562500 0.98437500 

7 0.00781250 0.99218750 

8 0.00390625 0.99609375 

9 0.00195313 0.99804688 

10 0.00097656 0.99902344 

0.00000000 1.00000000 
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Full-Sibing 

In a similar manner, the relationship between the panmictic index and the coefficient of 
relationship can be calculated for different generations for full-sib mating situation as shown in 
Table 3, where: 

Table 3 Relationship between panmictic index (P) and coefficient of 
relationship (F) with full-sib mating and F2 as original population. 

Generation P F 

0 1.00000000 0.00000000 

1 1.00000000 0.00000000 

2 0.75000000 0.25000000 

3 0.62500000 0.37500000 

4 0.50000000 0.50000000 

5 0.40625000 0.59375000 

6 0.32812500 0.73437500 

7 0.26562500 0.78515625 

8 0.21484375 0.78515625 

9 0.17382813 0.82617188 

10 0.14062500 0.85937500 

0.00000000 1.00000000 
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Chapter 4: Measures of Similarity 
William Beavis; Mark Newell; and Anthony Assibi Mahama 

In an ideal reference breeding population, there is no structure consisting of sub-populations 
or aggregates of relatives organized into families and tribes. Plant Breeding populations, on the 
other hand, are organized into sub-populations. Perhaps the best-known example is represented 
by the heterotic germplasm pools in maize, e.g., Stiff Stalks, Non-Stiff Stalks, Lancasters, and 
Iodents. In cytoplasmic male sterile hybrid systems such as sorghum, the restoration pattern 
can be the primary divider of germplasm with additional subdivisions based on morphological 
characteristics and geographic origins, e.g., Kaoliang, Durra, and Feterita. Alternatively, 
coefficients of relationship and inbreeding among members of a breeding population can be 
used to represent the structure of the breeding population. Also, with the emergence of high 
throughput molecular marker technologies, it is possible to represent relationships among 
members of a breeding population using identity in state to produce a realized kinship matrix. 

Learning Objectives 

• Utilize coefficients of inbreeding and parentage to construct the numerator relationship matrix 
• Utilize molecular marker information to construct a realized kinship matrix 

Population Structure Based on Pedigree Information 

Animal breeders were the first to utilize relationships among individuals for the purpose of 
providing Best Linear Unbiased Predictions in linear mixed models. The “A” matrix in the linear 
mixed model equation, also known as the Numerator Relationships Matrix (NRM) was originally 
used by Henderson to capture information from relatives to predict breeding values of animals. 
In essence, the A-matrix provides information on the proportion of alleles that are identical by 
descent between all pairs of individuals in a breeding population. 

Specifically, the numerator relationships are equal to twice the coefficient of coancestry between 
any pair of individuals. In other words, . Thus, if we know the pedigrees of 
all members of a breeding population, we can construct an A-matrix using a recursive tabular 
method. 
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Recursive Tabular Method 

A recursive tabular method for constructing the A-Matrix is described below: 

1. Order members of a pedigree chronologically, i.e., list parents before offspring. Assume that 
founder lines are not inbred and are not related to each other. 

2. Transpose the list and use this to represent columns for the  matrix. 
3. Beginning with the cell represented by  compute . 
4. Move to cell  and compute . This will be the same value that can be used for cell 

5. Move to cell  and compute . 
6. Move to cell  and compute . This will be the same value for 
7. Move to cell  and compute . This will be the same value for 
8. Move to cell  and compute 
9. Repeat until all elements of the  matrix are completed. 

Population Structure Based on Markers 

The Realized Kinship Matrix 

Consider two cultivars scored for 1400 SNPs. We can ask whether this pair of cultivars has the 
same or different alleles at each locus. Intuitively, if they had the same allele at all 1400 loci, we 
would say that there are no detectable allelic differences between the two genotypes, i.e., that 
they are identical in state or that their similarity index = 1.0. Alternatively, if none of the alleles 
are the same at all 1400 loci, then we would say that the genotypes have no alleles in common, 
i.e., that their similarity index is zero. In practice, the two genotypes will exhibit a measure of 
similarity somewhere between these extremes. 

Quantitative Measure for Similarity 

Let us take this intuition and develop a quantitative measure for similarity. If the two cultivars (x 
and y) have the same pair of alleles at a locus, score the locus = 2; if one of the alleles is the same, 
score the locus = 1; otherwise, the score = 0. If we sum these up across all loci, the maximum 
score would be 2800. If we divide the summed score by 2800, we would obtain a proportion 
measure (designated ) to quantify the similarity between the pair of lines. This concept can 
be represented algebraically as: 
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 Formula for calculating the similarity between pairs of lines. 

where: 
 = the number of loci, 

 = the two cultivars. 

Such a similarity measure could be converted into an “intuitive genetic distance” measure by 
subtracting  from 1. 

Measures of Distance 

Our intuitive genetic distance would make sense if: 

1. There are only two alleles per locus. 
2. Our interpretation of the result does not include inferences about identity by descent, and 
3. There is no LD among the SNP loci. 

However, most populations are more complex, requiring more nuanced measures of genetic 
distance. Population geneticists tend to use three distance measures depending upon the 
inference about the population structure they are trying to understand. These are: 

• Nei’s Distance assumes all loci have the same neutral rate of mutation, mutations are in 
equilibrium with genetic drift, and the effective population size is stable. The interpretation 
is a measure of the average number of changes per locus and that differences are due to 
mutation and genetic drift. 

• Cavalli-Sforza’s Distance assumes differences are due to genetic drift between populations 
with no mutation and interprets the genetic distance as an Euclidean Distance metric. 

• Reynolds Distance is applied to small populations; thus, it assumes differences are due to 
genetic drift and is based on knowledge about coancestry, i.e., identity by descent for alleles 
that are the same. 

Application of Distance and Similarity Measures 

There are a large number of additional distance and similarity measures that can be applied 
to molecular marker scores, including Euclidean, Mahalanobis, Manhattan, Chebyshev, and 
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Goldstein. Also, Bayesian Statistical approaches can be used to identify structure in the 
population (Pritchard et al, 2000) without resorting to the calculation of distance metrics. The 
choice of an appropriate method depends upon the type of molecular marker data and the 
research question. A thorough presentation of distance measures is beyond the scope of this 
course, but there are graduate courses on multivariate statistics in which issues associated with 
each of the distance metrics can be explored. 

For now, let us assume that we decided to use our  to represent differences between all pairs 
( ) of breeding lines. Next, suppose we extend the example from two lines to 1800 lines scored 

for 1400 SNPs. In this case, there are  =  = 1,619,100 estimates 

of pairwise distances among the lines. 

Clearly, any attempt to find patterns in a data matrix consisting of all pairwise measures of 
similarity or distance will take considerable effort. Yet, these patterns in the data are essential 
to quantifying the structure in a breeding population because the structure will affect inferences 
about genetic effects. It is the need to find patterns in such large data sets that motivated the 
application of multivariate statistical methods such as principal components and cluster analyses 
in plant breeding populations. 

Principal Component Analysis 

The primary purpose for applying principal component analysis (PCA) to genetic distance 
matrices is to summarize, i.e., reduce dimensionality so that the underlying population structure 
can be visualized. 

Fig. 1 Effect of principal component analysis. 
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Conceptual Interpretation 

Imagine we have two variables, denoted x1 and x2, where x1 represents the distance scores 
between cultivar 1 and all other cultivars, and x2 represents the distance scores between cultivar 
2 and all other cultivars. If we plot the x1 and x2 pairs of data, we might generate a plot such 
as seen in Fig. 1A. We could add distance data for a third cultivar and represent the data with a 
3-dimensional plot. We could obtain data for as many cultivars as we might have interest in, but 
the ability to plot these in multi-dimensional space is not possible. 

 

Fig. 2 Effect of principal component analysis with the first PC. 

We refer to the first principal component (PC), also known as the first eigenvector, as a line (red) 
that minimizes the perpendicular distances (blue line) between the red line and the data points 
(Fig. 2A). 

Principal Component Analysis – Interpretation 

The second PC follows the same definition except that it represents a line through the data that 
minimizes the distance between a second line that is orthogonal (at a right angle) to PC1. The 
second PC minimizes the distance between the data and the second line. Since the second PC is 
orthogonal to the first, the distance among the data points represented by each PC is maximized. 
Thus we can plot data points represented by the first two principal components (Fig. 3B). By 
plotting the PCs instead of the raw data, we often find hidden structures in the data (compare 
Fig. 3A vs. 3B). 
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Fig. 3 Effect of principal component analysis with second PC. 

Subsequent PCs represent lines that are orthogonal to all previous PCs and minimize the distance 
between each PC and data points that maximize the variability among the orthogonal PCs. This 
means that each PC is uncorrelated to all other PCs. 

A useful measure in PCA is the eigenvalue associated with each eigenvector (PC). The first 
eigenvalue is the proportion of maximum variability among the multidimensional data that is 
explained by the first PC. For the data depicted in Fig. 3B, the first eigenvalue is 0.997, and the 
second eigenvalue is equal to 0.003. Since the first PC is the vector (or line) that is plotted in the 
direction of maximum variability among data points, the first eigenvalue is always the largest, 
and each consecutive eigenvalue accounts for less variability than the prior PCs. 
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PCA Example 

Fig. 4 Four distinct clusters produced by 
PCA. 

Let us consider an example from a set of 1816 barley lines scored for 1416 SNPs (Hamblin 
et al. 2010). In this analysis, there were 

 estimates of pairwise 

distances based on 1416 SNP scores for each of the barley lines. Eigenvalues for PC1 and PC2 
accounted for 24.5% and 10.1% of the variability among pairwise genotypic distances. By plotting 
PC1 versus PC2 (Fig. 4), we observe four distinct clusters. Subsequent analyses of the lines 
represented by each point in the clusters revealed that the members of each cluster are from 
2-row, 6-row, spring, or winter barley types. From a breeding perspective, we can see that most 
breeding for barley occurs within types rather than between types. The population structure is a 
result of breeding processes of selection, drift, and non-random mating. 

Cluster Analysis 

Similar to PCA, the purpose of applying cluster analysis to matrices of pairwise distance 
measures among a set of genotypes is to segregate the observations into distinct clusters. There 
are many types of cluster analyses, and a primary distinction is between supervised and non-
supervised clustering. K-means is one of the supervised methods that have been widely adopted 
by plant population geneticists. The clustering method is supervised in the sense that K 
represents a pre-determined number of clusters. Designating the number of clusters is usually 
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based on prior knowledge about groups of lines that are being clustered. For example, it might 
make sense to designate the four clusters of barley lines based on known breeding history in 
which different barley agronomic types are not inter-mated. K-means represents an iterative 
procedure with the following steps: 

1. An initial set number of K means (seed points) are determined (also called initialization); 
these are the initial means for each of the K clusters. 

2. Each genotype is then assigned to the nearest cluster based on its pairwise distances to all 
other genotypes within and among clusters. 

3. Means for each cluster are then re-calculated, and genotypes are re-assigned to the nearest 
cluster. 

4. Steps ii and iii are then repeated until no more changes occur. 

Cluster Analysis Example 

Fig. 5 PCA-produced k-means. 

For the barley data, since the inter-mating rule is not absolute, i.e., some agronomic types are 
occasionally inter-mated, it could be informative to designate K = 6 (Fig. 5). Note that a plot of 
PC1 vs PC3 (Fig. 5B) demonstrates the value of plotting PCs beyond the first two. While the third 
PC accounts for only 4.5% of the variability among genotypes, the third PC helps to distinguish 
what appears to be members of the same cluster in Fig. 5A. 
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Hierarchical Clustering 

Fig. 6 Dendogram observations data 

An unsupervised approach to clustering genotypic distance data is hierarchical clustering. This 
approach sequentially lumps or splits observations to make clusters. Applying the hierarchical 
approach to the barley data set, we can visualize the results using a dendrogram (Fig. 6). In 
the dendrogram, observations are arrayed along the x-axis, and the y-axis refers to the average 
genetic distance between breakpoints. For example, the horizontal line at 4e+05 indicates that 
there are two major groups with a distance between them of 4e+05. The user determines the 
height (distance along the y-axis) at which a horizontal line is drawn, and the number of clusters 
is chosen; this is drawn below in red for 6 clusters. The user may determine this by using the PC 
plots, cluster dendrogram, and any prior information that is known about the germplasm. 

Hierarchical clustering can be implemented in many different ways. For genotypic data, the 
most common method is Ward’s, which attempts to minimize the variance within clusters and 
maximize the variance between clusters. Similar to K-means clustering, we can look at the PC 
plots to explore the results for hierarchical clustering to see how the lines were assigned to 
clusters. 
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Chapter 5: Gene Effects 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

In 1918, RA Fisher provided the first major contribution to the Modern Synthesis by proposing 
a model that reconciled the inheritance of discrete characteristics (Mendel) and continuous, 
or quantitative, characteristics (Darwin) in breeding populations. Herein, the same theoretical 
foundations are introduced. 

For the beginning student, it will seem that the primary purpose of theory and modeling is 
to provide interpretations of observational and experimental results. Without this theoretical 
foundation, there would be no genetic understanding of the results from plant breeding 
experiments. 

However, there is a more important practical justification for learning theoretical models: Theory 
provides predictions. Predictions are the basis for generating testable hypotheses. Also, with a 
theoretical model, it is possible to simulate many different breeding strategies. These can be 
compared, and the most promising can be used to design and implement the most effective 
and efficient breeding strategies. Thus, the theory provides a rational basis for designing plant 
breeding programs. 

Learning Objectives 

• Model Genotypic and Phenotypic Values of individuals in crop breeding populations. 
• Integrate genotypic effect models with allele frequency models at single and multiple loci. 
• Distinguish and estimate genetic effects, effects of allele substitutions, and Breeding Values at 

single and multiple loci. 
• Distinguish and estimate dominance and epistatic deviations from additive effect models. 
• Integrate concepts to applied breeding programs with data sets consisting of genotypic (marker) 

information with phenotypic information for QTL analyses. 

Linear Models for Phenotypic Values 

Single Locus 

The phenotypic value of an individual, or group of individuals, is observed when a character or 
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trait is measured. For example, if a corn plant was measured and found to be 275 cm tall, then 
that would be its phenotypic value for height. 

To draw inferences about the genetic properties of a trait, we model phenotypic values using 
linear components. The most common model consists of a part due to genetics and a part due to 
non-genetic effects such as the environment. This is usually written as: 

, 

 Linear model for evaluating phenotype. 

where: 
 is the phenotypic value, 
 is the genotypic value, and 
 represents the non-genetic factors. 

If we assume that , then , and . 

Population Mean 

The mean phenotypic value of a population is equal to the mean genotypic value when the non-
genetic (environmental) deviations sum to zero. 

To calculate the expected genotypic properties of a population for a single locus, we assign 
arbitrary genotypic values to each locus. 

Consider a single locus with two alleles  and . 

Coded genotypic value of one homozygote  = . 

Coded genotypic value of the other homozygote  = 

Coded genotypic value of a heterozygote  = . 

We can arbitrarily designate the A allele as the allele that increases the genotypic value. The 
genotypic value of the heterozygotes (d) depends on the level of dominance: 
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Degree of Dominance 

1. No dominance when d = 0 (Fig. 1). 

Fig. 1 Line diagrammatic representation of no dominance. 

2. If  is dominant or partially dominant relative to the  allele, then d is positive towards the 
AA genotype, as shown in Fig. 2. 

Fig. 2 Line diagrammatic representation of dominance or partial dominance of A 
over a allele. 

3. If a is dominant or partially dominant to the A allele, then d is negative (Fig. 3). 

Fig. 3 Line diagrammatic representation of dominance or partial dominance of a 
over A allele. 

4. If dominance is complete: d = +a or -a 

Fig. 4 Line diagrammatic representation of complete dominance of A over a allele 
or a over A allele. 

5. If there is overdominance: d is greater than +a or less than -a 
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Fig. 5 Line diagrammatic representation of overdominance. 

Allele Frequencies and Population Mean (Table 1) 

Table 1 Influence of allele frequencies and dominance deviation on the average 
value of the trait in the population. 

n/a Genotype 

n/a AA Aa aa Total 

Frequency 1 

Genotypic 
Value n/a 

Coded GV n/a 

Freq. x 
Coded GV 

Table 2 An example of a genotype that controls the number of flowers and the 
expected population value for number of flowers. 

n/a Genotype n/a 

n/a AA Aa aa Total 

Frequency 

Genotypic Value n/a 

Coded GV n/a 

Freq. x Coded GV 

Note: Coded Genotypic Values are obtained by subtracting the mid-parent value i.e., the 
midpoint between the genotypic values of the two homozygotes (Table 2). 

Population mean , and 

. 

The population mean is estimated using Equation 2. 

. 
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 Formula for calculating population mean. 

where: 
 = frequency of A allele, 
 = frequency of a allele, 
 = coded genotypic values of AA, aa genotypes, 
 = coded genotypic value of Aa genotype. 

Additive Gene Action 

Applying Equation 2 and the data in Table 2, the population mean is calculated as shown below. 

 is both the mean genotypic value and the mean phenotypic value of the 
population with respect to the trait. 

Notice that if d = 0, the heterozygote genotype has no impact on the population mean, and we say 
that completely additive gene action exists. 

Two Loci 

Next, consider the contributions of alleles at more than one locus and find the joint effect on the 
mean (Table 3). 

Consider two single loci: 

• Genotypic value of  is 
• Genotypic value of  is 
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Consider multiple loci: 

• Genotypic value of  is . 
• Total genotypic value is  = . 
• The mid-homozygote genotypic value is the average of double homozygotes 

. 

Table 3 Joint effects of coded genotypic values and frequencies of alleles at two loci. 

Two-locus genotypic values 
and frequencies 

A locus genotype 

AA Aa aa 

B locus 
genotype 

Coded Genotypic 
Value/Freq. 

BB 

Bb 

bb 

Population Mean 

Population mean,   =  + Expected values of GA and GB 

GA and GB are weighted averages based on allele frequencies and coded genotypic values. The 
population mean is then represented by Equation 3. 

 Alternative formula for calculating population mean. 

where: 
 = weighted average of A allele, 
 = weighted average of a allele, 
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 = expectation of sum of the two values, 
 are as defined previously. 

A numerical example is given in Table 4. 

Table 4 A numeric example involving dominance and allele frequencies that are 
not equal at two loci. 

Two-locus genotypic values and frequencies 
A locus genotype 

AA Aa aa 

B locus genotype Boded Genotypic Value/Freq. 8 
0.64 

4 
0.32 

-8 
0.04 

BB 4 
0.04 

12 
0.0256 

8 
0.0128 

-4 
0.0016 

Bb 2 
0.32 

10 
0.2048 

6 
0.1024 

-6 
0.0128 

bb -4 
0.64 

4 
0.4096 

0 
0.2048 

-12 
0.0256 

Average at locus A 6.24 2.24 -9.76 

Average at locus B 10.08 8.08 2.08 

Extension To More Than 2 Loci 

We can extend the concept discussed above for two-locus case to more than two loci and calculate 
the population mean in a similar manner; where 

• 

• midpoint is the average of the most extreme multi-locus-homozygotes 
• Population mean = , is represented by Equation 4 

CHAPTER 5: GENE EFFECTS  |  57



 Formula for calculating population mean involving more than two loci. 

where: 

 = expectation of the sum of all G values, 

 are as defined previously. 

Average Genetic (Allelic) Effects 

Individuals chosen as parents transmit only a sample consisting of ½ of its alleles. With selection, 
we are concerned with the transmission of value from parent to offspring. This cannot be 
determined based on genotypic value alone. Parents pass on their genes or alleles, NOT their 
genotypes, to the next generation. Genotypes are created anew in each generation. One result is 
that some aspects of the value of a particular genotype are unpredictable. Yet, selection theory 
can work only with the predictable aspects of the union of two gametes. Therefore, we introduce 
the average effect of a gene (allele) to represent this concept. 

Fig. 6 Average effects of alleles on populations. 
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Key Concept: Although genotypes determine genotypic values, alleles and not genotypes are inherited 
by progeny. 

Average effect of a gene (allele): The mean deviation from the population mean of individuals who 
received the gene (allele) from one parent is the average effect of the gene (allele). The effect of the 
other gene (allele) received from the remaining parent is represented as a random allele from the 
population … for this concept. 

Formula of Average Effect of an Allele 

Conceptually, let a number of gametes carrying the A allele unite at random with gametes from 
the population; then, the mean of the genotypes deviates from the population mean by an amount 
that is the average effect of the A gene. This represents the average allele effect and is the average 
deviation from the population mean of individuals who received a specific allele from one parent 
and the other allele at random from the population. 

Table 5 Average effect of an allele. 

Alleles 
Genotypes, coded 
genotypic values and 
frequencies 

Mean value of 
genotypes 
produced 

Population mean to 
be deduced 

Average effect of the 
allele ( ) 

n/a next gen this gen (next gen) — (this gen) 

The average effect of the A allele (or the α allele) from a single locus is designated as αA (or αa) and 
calculated for data presented in Table 5 as: 

Allele Substitution Effect 

The average effect of an allele substitution, often designated as , is the difference between the 
average effects of each allele (Equation 5). 
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 Formula for calculating the average effect of allele substitution. 

where: 
 = the average effects of allele A and a, respectively, 

 are as defined previously. 

For example, from Table 5,  and  represent average allele effects of  and , respectively. 

Average effects of each allele can be calculated as: 

Thus, the average effect of allele substitution = 

Note the average genetic effect is: 

• Dependent on genotypic value, 
• Dependent on gene frequencies, 
• A property of the population as well as the genes concerned. 

Breeding Value 

Breeding value is a concept that is based on the following: 

• The average value of a parent is judged by its progeny. 
• Alleles carried by an individual and transmitted to its offspring can be inferred from the 

progeny, 
• Which represents the sum of the average effects of all alleles an individual carries. 

Let us use the average effect of alleles to rewrite the Equation 1 as: 

 Alternative formula for calculating phenotypic value based on average effect of 
alleles. 

where: 
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 = the average effects of allele i, j in a diploid individual i, j, respectively, 
 is the dominance deviation. 

Breeding value is the value of an individual judged by the average value of its progeny. The 
breeding value of an individual is equal to the sum of the average effects of the alleles it carries. 
The summation is over pairs of alleles at a locus and over all loci (Table 5). It is defined as twice 
the expected deviation of the individual’s progeny mean from the population mean when the 
individual is mated at random to other individuals from the same population (Tables 6 and 7). 

Mean Breeding Value in Random Population 

The mean breeding value in a random mating population is zero. 

Table 6 Relationship of breeding values to genotypes. 

Genotype Breeding value 

Table 7 Theoretical example of calculations of breeding values. 

Genotype Breeding value 

Deviations for Average Genetic Effects 

Dominance Deviation 

For a single locus: the difference between the genotypic value and the breeding value of a 
particular genotype is known as the dominance deviation. It is associated with the  genotype. 

 represents the deviation of genotypic value (i.e., ) from the regression-fitted genotypic 
value and is zero when dominance is absent ( ) 

Consider Genotype . Recall that the Coded genotypic value of  = , and the population 
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mean equals . 
If a is expressed as deviation relative to the population mean, then is can be calculated using 
Equation 7. 

 Alternative formula for calculating average effect of allele substitution. 

where: 
 = the average effect of allele substitution, 

 are as defined previously. 

Notice that if d is not 0, and p is not equal to q, then a is affected by d. Also, recall that a can be 
expressed in terms of the average effect of an allele substitution (Equations 8 and 9), where terms 
are as defined previously, 

 Alternative formula for calculating average effect of allele substitution. 

Thus 

 Alternative formula for calculating average effect of allele substitution. 

Using similar algebra, the dominance deviation is represented by Equation 10 as, 

 Alternative formula for calculating the dominance deviation. 

Observations About Dominance 

Notice that 

• If there is no dominance, d is zero, and the dominance deviations are also zero. 
• In the absence of dominance, breeding values and genotypic values are the same. 
• Alleles involved with genotypes that show no dominance, i.e., d = 0, are sometimes called 

‘additive genes’, or are said to ‘act additively’. 
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Breeding Values and Dominance Deviations 

Fig. 7 Breeding values and dominance deviations. 

As shown in Equation 6 the algebra of breeding values and dominance deviations provides the 
theoretical basis for subdividing the G component of the Phenotypic model, 

Thus, based on the algebra and substituting data from Table 7, dominance deviation is calculated 
as shwon below. 
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Epistasis 

Epistasis exists when genotypes at two or more loci result in a genotypic value that is greater or 
less than the sum of the average genotypic effects at each of the individual loci. For example, 

Table 8 Two-locus genotypic values that do 
not exhibit epistasis. The total genotypic 
value is the sum of the individual locus 

genotypic values. 

Genotype at Locus A Genotype at Locus B 

n/a BB Bb bb 

AA 22 18 6 

Aa 20 16 4 

aa 14 10 -2 

Table 9 Two-locus genotypic values that 
exhibit epistasis. The total genotypic value is 
NOT equal to the sum of the genotypic values 

at the loci (GA + GB). 

Genotype at Locus A Genotype at Locus B 

n/a BB Bb bb 

AA 24 18 6 

Aa 20 16 4 

aa 14 10 -2 

Graphical View of Epistasis 

Epistasis between loci within an individual can be represented as the reaction norm of different 
genotypes at one locus, plotted against the genotypes at a second locus. 

Figure 8A: Epistasis between loci occurs because the reaction norms of the locus B genotypes 
differ in slope. 

Figure 8B: The reaction norms are parallel; thus, the effects of the two loci are independent, and 
no epistasis is present. 
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Fig. 8 Graphs of epistasis (A) and no epistasis (B). 

Physiological and Statistical Dominance 

Cheverud and Routman (1995) identified two concepts associated with the term epistasis: 
physiological epistasis and statistical epistasis. 

The distinction between these two concepts is similar to that made between physiological and 
statistical dominance: 

Physiological Dominance: 

• Heterozygote is not midway between two homozygotes. 
• Values of a and d are not dependent on allele frequencies. 
• When d ≠ 0, it reflects intralocus interaction is present. 
• Least-squares solution of the unweighted regression of the number of genotypic values on 

the number of “a” alleles. 
• Physiological dominance contributes to both additive and dominance values and variances. 

Statistical Dominance Deviations: 

• Deviations of single-locus from the additive combination of alleles contribute to the 
genotype. 

• Depend on allele frequencies and will change with changes in allele frequencies. 
• Least-squares solution of a weighted (weighted by genotypic frequencies) regression of 

genotypic value on the number of alleles. 
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Physiological Epistasis 

In physiological epistasis (or mechanistic epistasis): 

• Interaction effects occur “within” genotypes, where genes expressed within a single 
genome interact. 

• Simply recognizes that certain genotypes at two or more loci interact in the production of a 
phenotype. 

• If all possible genotypic classes are equally frequent in a population, the influence of 
genetic interactions on phenotypes will be directly observable. 

• The contribution of physiological epistasis to populations is a function of the frequencies of 
interacting genotypes in a population. 

Model for Physiological Epistasis 

Let the phenotypic value of an individual be determined by the combination of the alleles present 
at two loci. This model is used to illustrate how physiologically based gene interactions map to 
components of genetic variation. 

Consider the two loci, each with two alleles per locus; the two-locus (physiological) genotypic 
values, Gijkl, are the average phenotype of individuals with the ijth genotype at the first locus, 
and the klth genotype at the second locus. Notice that we are not given the genotypic values for 
the A locus nor for the B locus.  So, we will determine the unweighted marginal means for each 
genotype. 

Table 10 Example of Epistasis using Genotypic Values. 

n/a 
Unweighted 
marginal mean 

Unweighted 
marginal means 
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Single Locus Genotype 

The single-locus genotype is defined as the unweighted average across the genotypes at the 
second locus, for example, Equation 11. 

 Alternative formula for calculating the dominance deviation. 

where: 
 = the single locus genotype value. 

Thus, the value at locus A is, 

and at locus B is, 

Non-Epistatic Genotypic Value 

Subscripts  and  or  and  refer to the two alleles at the interacting loci. The single locus 
values of  and  are computed as in Equation 12. 

 Formula for calculating the single locus values, 

where: 
 = the single locus values. 

Thus, the value at locus A is, 

and 
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Similarly,  and  can be calculated to be 4 and 2, respectively. Try it! 

The non-epistatic genotypic value, , is calculated using Equation 13, represented by, 

 Formula for calculating the non-epistatic genotypic value, 

where: 
 are as defined previously. 

For AABB genotype, 

. 

Epistatic Genotypic Value 

Table 11 Non-epistatic values. 

n/a 

The epistatic genotypic value is represented by Equation 14. 

 Formula for calculating the epistatic genotypic value. 

Example from data in Table 11 is, 

A value of  different from zero indicates that Physiological Epistasis is present. In this 
example, there is little evidence for epistasis for this cell. Is there evidence for epistasis in the 
other cells? 

68  |  CHAPTER 5: GENE EFFECTS



Statistical Epistasis 

In statistical epistasis (or population epistasis): 

• The term is used to refer to the amount of population variation in genotypic values 
associated with variation among loci. 

• Notation that is often used includes ,  or , or . 
• The amount of statistical epistasis present in a population is a function of the frequencies 

of interacting multilocus genotypes and therefore is a function of population allele 
frequencies as it is for additive and dominance variance ( ). It is calculated 
using Equation 15. 

 Formula for calculating the statistical genotypic value. 

where: 
 = the total epistatic (statistical) value, 
 = value at locus A, 
 = value at locus B, 

 = value due to A by B interaction. 

Presence of epistasis between locus  and  changes the population mean, ( ), mid-
homozygote value ( ),  (additive), and  (dominance) values. 

Table 12 An example with Epistatic effects. 

Two-locus genotypic values and frequencies 
A locus genotype 

AA Aa aa 

B locus 
genotype 

Coded Genotypic Value/
Freq 

BB 

Bb 

bb 

Average at locus A 

Average at locus B 
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Epistasis Effects 

The genotypic value of AABB has been increased from 22 to 24 due to epistatic effects. 

There are changes in population mean, mid-homozygote values for A and B locus, and the average 
at A and B locus as shown in calculations below. 
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Chapter 6: Components of Variance 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

This chapter explores sources of phenotypic variation (Fig. 1), whether genetic or environmental 
and how these contribute to the heritability of selected traits. It covers the derivation of variance 
components and covariance, the relationship among variance components, and the role of 
epistasis. 

Learning Objectives 

Type your learning objectives here. 

• Learn to model components of genetic variances for purposes of estimating heritability. 
• Be able to explain: 

◦ The impact of allele frequencies on genetic components of genotypic variability, 
◦ The reason estimates of components of genetic variability are limited to the population 

from which they are estimated, 
◦ The reason additive variance does not imply additive gene action and 
◦ How additive genetic variance can arise from genes with any degree of dominance or 

epistasis. 
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Fig. 1. Variation in height depicted in 
human and corn plants. From 
“Critique of the Theory of Evolution” 
(1915) by Thomas Hunt Morgan, 
available freely at Project Gutenberg. 
Licensed under Public Domain 
via Wikimedia Commons. 

Phenotypic Components of Variance 

Recall that our working model for the phenotype includes genotypic and non-genotypic 
(environmental) sources of variability (Equation 1): 

 Working model of phenotypic, genotypic, and environmental effects, 

where: 
 = overall mean, 
 = genotypic effect, 

 = environmental effect. 

 

The source of phenotypic variability determines whether selection for the trait will result in a 
heritable response, i.e., will be passed on to the next generation. 
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For purposes of making decisions in plant breeding, if two populations have different phenotypic 
means, we want to know whether the differences are due to different environments, different 
genotypes, or some combination of both. If the differences are due to genotypic differences, then 
what proportion of the genotypic differences is heritable? 

Fig. 2 Comparing phenotypic traits of plant populations at the 
University of KwaZulu-Natal in South Africa. Photo by Iowa State 
University. 

Algebraic Description 

Using simple algebra and our working model, we can show that the phenotypic variance VP 
within a population is equal to the sum of the genotypic variance VG and environmental variance 
VE, assuming that VG and VE are independent (Equation 2); 

 Working model of phenotypic, genotypic, and environmental variances, 

If the genotypic values and environmental deviations are not independent, the V(P)=V(G+E), and 
V(P) can be increased by twice the covariance of G with E if they are not independent (Equation 
3): 

 Composition of phenotypic variance, 

where: 
 = joint variation between G and E. 
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Genetic Components of Variance 

Genetic components of variability can be divided into several subcategories, including additive 
variance, VA, dominance variance, VD, and epistatic variance, VI. Together, the values for each of 
these subcategories yield the total amount of genetic variation, VG, responsible for a particular 
phenotypic trait: VP = VG + VE. 

Consider the ratio of VG to VP. This was originally recognized by statistical geneticists (such as 
RA Fisher) as the genotypic intra-class correlation. To understand this, consider the evaluation 
of a line i, for a phenotype, Y. Next, imagine that you can evaluate line i repeatedly. Let 
us designate these repeated measurements as j. We can then designate these repeated 
measurements of the phenotype as Yij. There is a Covariance among these repeated evaluations 
that we can represent as . 

Explanation of Formula 

Thus the correlation among these repeated measures is (Equation 4) 

, 

 Correlation among repeated measures, 

where: 
 = correlation between Yij and Yij’, 

 = covariance between Yij and Yij’, 

 &  = variance ofYij and Yij’. 

Because , the correlation is represented by Equation 5. 

 Correlation among repeated measures, 

where: 
 = correlation between Yij and Yij’, 

 = genotypic variance of genotype i, 
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 = variance of environment j for genotype i, 

 = phenotypic variance of genotype i in environment j. 

Heritability in the Broad Sense 

Broad sense heritability is estimated by Equation 6. 

 Formula for estimating broad sense heritability, 

where: 
 = the total genetic variance, 
 = the phenotypic variance. 

JL Lush, an animal breeder, also referred to this intra-class correlation coefficient as heritability 
in the broad sense (1937). He wanted to distinguish the application of intra-class correlation 
to animals from the concept of repeatability. Repeatability as an engineering concept refers 
to the same measurement procedure conducted by a single observer, using a single measuring 
instrument, under the same conditions, at a single location, over a short period of time. As 
a result, plant and animal breeders tend to prefer the use of broad sense heritability for the 
genotypic intra-class correlation, although both plant and animal breeders routinely evaluate a 
single trait on individual genotypes repeatedly over time and space (locations and years). 

Broad-Sense Components 

The genetic variance can be recognized as consisting of several components (Equation 7): 

 Composition of total genotypic variance, 

where: 
 = total genotypic variance, 
 = additive genetic variance, that is, the variance of breeding values, and refers to the 

deviation from the mean phenotype due to inheritance of a particular allele and this allele’s 
relative effect on phenotype, i.e., relative to the mean phenotype of the population, 

 =dominance variance due to interactions between alternative alleles at a specific locus, 
 = epistatic variance due to interaction between alleles at different loci. 
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Heritability in the Narrow Sense 

Heritability in the narrow sense was defined by JL Lush (1937) to represent the extent to which 
phenotypes are determined by the genes transmitted from their parents (Equation 8): 

 Composition of total genotypic variance, 

where: 
 = heritability in the narrow sense, 
 = additive genetic variance, that is, the variance of breeding values, and refers to the 

deviation from the mean phenotype due to inheritance of a particular allele and this allele’s 
relative effect on phenotype, i.e., relative to the mean phenotype of the population, 

 = phenotypic variance. 

 

So, we can now expand our model for the phenotypic variance to include several genetic variance 
components and environmental variance as in Equation 9. 

 Composition of total genotypic variance, 

where: 
 = environmental variance. Other variables are as described previously. 

Table 1 Variance components and sources of variation. 

Variance component Symbol Source of variation 

Phenotypic Phenotypic value 

Genotypic Genotypic Value 

Additive Breeding Value 

Dominance Dominance deviation 

Interaction Interaction deviation 

Environmental Non-genetic deviation 
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Deriving Variance Components 

The genetic components of variance are influenced by the gene frequency and the assigned 
genotypic values  and . The information needed to derive  and  are: 

Table 2 Derivation of additive and dominance variance components of genetic variance. 

Genotypes 

Frequencies 

Coded GV 

Genotypic Value 

Breeding Value 

Dominance Deviation 

The variances are thus obtained by squaring the values in the table, multiplying by the frequency 
of the genotype concerned, and summing over the three genotypes (Equation 10). 

 Derivation of additive and dominance variances, 

where: 
 = frequency of allele , 
 = frequency of allele , 
 = average effect of an allele, 

 = coded genotypic values. 
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Covariance 

If there is no dominance at the locus under consideration d = 0, then: . 

If there is complete dominance d = a, the additive variance becomes . 

The total genetic variance is estimated with Equation 11. 

 Total genetic variance formula including covariance of additive and dominance 
variances, 

where: 

 is the covariance of breeding values with dominance deviations, which can be 
demonstrated to be zero. Thus substituting in Equation 12, 

 Total genetic variance formula relating additive and dominance variances to 
allele frequencies and coded genotypic values, 

where: 

 are as described previously. 

Component Relationships 

The relationships among variance components, gene action, and allele frequencies for the two 
allele case can be graphically represented (Figs. 3, 4, 5). 
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Additive Gene Action 

Fig. 3 Genetic variance due to additive gene action 
only and related to allele frequency changes. 

Additive gene action: There is no dominance (a>0, d=0). In this case, the genetic variance is 
additive, and it is greatest when p=q=0.5. 

Complete Dominance 

Fig. 4 Variance changes in response to allele 
frequency changes. 

Complete dominance: ( ). The dominance variance is maximal when p=q=0.5. The 
additive is maximal when p=0.3. 
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Overdominance 

Fig. 5 Variance changes in response to allele 
frequency changes. 

Overdominance: ( ). The dominance variance is the same as incomplete 
dominance. 

Principles to Remember 

Important principles to remember: 

1. All the components of genetic variance are dependent on the gene frequencies. 
2. Estimates of components of genetic variances are valid only for the population from which they 

are estimated. 
3. The concept of additive variance does not carry with it the assumption of additive gene action; 

the existence of additive variance is not an indication that genes act additively. 
4. Additive variance can arise from genes with any degree of dominance or epistasis. 
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Fig. 6 Examining phenotypic traits of maize fields at the University of 
KwaZulu-Natal, South Africa. Photo by Iowa State University. 

Influence of Epistasis 

Two Or More Loci: Influence of Epistasis on Components of 
Genetic Variance 

When more than one locus is under consideration, then deviations due to interactions among loci 
give rise to additional variance components due to epistatic interactions, Vi (Equation 13). 

 Components of epistatic interaction variance, 

where: 
 = additive × additive variance is the interaction between two breeding value, 
 = additive × dominance variance is the interaction between the breeding value of one 

locus and the dominance deviation of the other, 
 = dominance × dominance variance is the interaction between the two dominance 

deviations. 
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Epistatic Model 

A non-intuitive consequence of the epistatic models is that additive variance can arise from 
purely epistatic genetics. For example, let’s consider the special case of an F2 population with 
equal frequencies of two alleles at each of two independently segregating loci. Let’s imagine that 
we know the genotypes at each of these functional loci and analyze the F2 population using a 
regression approach for each of the loci and their interactions. 

Table 3 Sources of genetic variability and associated df in an analysis of independently segregating loci 
in an F2 population based on a regression approach of analysis. 

Source of variance Df 

Locus A 2 

Linear (Additive) 1 

Quadratic (Dominance) 1 

Locus B 2 

Linear (Additive) 1 

Quadratic (Dominance) 1 

Epistasis 4 

Linear A x Linear B (A * A) 1 

Linear A x Quadratic B (A * D) 1 

Quadratic A x Linear B (D * A) 1 

Quadratic A x quadratic B (B * D) 1 

Total 8 

Example 1 

Analysis of a phenotype in an F2 population with equal frequencies of alleles at two functionally 
polymorphic loci, each contributing only additive coded genotypic values from the A locus and a 
B locus, i.e., , where = 5,  = 3, and  =1. 
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Table 4 Parameters and their Coded Genotypic 
values for P (example 1). 

Parameter Value 

3 

0 

1 

0 

5 

Table 5 Coded Genotypic values for two functional bi-allelic loci in an F2 population derived 
from a cross of two inbred lines (example 1). 

n/a n/a Mean 

n/a n/a 1/4 1/2 1/4 n/a 

1/4 9 6 3 6 

1/2 8 5 2 5 

1/4 7 4 1 4 

Mean n/a 8 5 2 2.75 
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Table 6 Calculated variances components for the 
F2 population described in example 1. 

Variance component Variance 

4.5 

0.5 

0 

0 

0 

0 

0 

0 

Example 2 

Analysis of a phenotype in an F2 population with equal frequencies of alleles at two functionally 
polymorphic loci where only single epistatic interaction between the genotypes will produce an 
altered phenotype, , where  = 0,  = 0,  = 0, 

 = 0,  = 0,  = 50. 

Table 7 Coded Genotypic values for two functional bi-allelic loci in an F2 population derived 
from a cross of two inbred lines (example 2). 

n/a n/a Mean 

n/a n/a 1/4 1/2 1/4 n/a 

1/4 0 0 0 0 

1/2 0 0 0 0 

1/4 0 0 50 12.5 

Mean n/a 0 0 12.5 3.125 
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Table 8 Calculated variances components for the 
F2 population described in example 2. 

Population variances Population Percent 

Total genetic 146.484 100.0% 

Additive effects 39.063 26.7% 

Dominance 19.531 13.3% 

Epistasis 87.891 60.0% 
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Chapter 7: Estimates of Variance 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

Estimating heritability is a fundamental concept of quantitative genetics. One method for 
obtaining estimates of heritability is the use of variance and covariance of a known collection of 
relatives from various types of progeny. 

Learning Objectives 

• Model components of genetic variances and covariances for purposes of estimating heritability, 
a fundamental concept of quantitative genetics. 

• Explain why estimates of components of genetic variability are limited to the population from 
which they are estimated. 

• Students will derive variance components and recognize the differences amongst components 
obtained from different progeny used for estimating heritability. 

• Students will write out the correct linear models for the correct mean squares and expected 
mean squares in a ANOVA table, and correctly interpret the ANOVA and algebraically extract 
the correct values for estimating heritability. 

• Leverage of the powerful algebraic equivalence of covariances within groups of relatives to 
variances among the same groups. 

Covariance of Relatives 

Recall that Cov(Yij,Yij’) = Var(Gi), for j ≠ j’. In the context of genotypic sampling of relatives, this 
general relationship has a profound and powerful impact on interpretation of ANOVA. It means 
that the covariance among a sample of relatives can be used to estimate components of genetic 
variance associated with the genotypic effect. 
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Table 1 A general ANOVA table for any type of related progeny. 

n/a EMS 

Source df MS Variances Covariances 

Reps n/a n/a n/a 

Progeny 

Error 

Total n/a n/a n/a 

Within 
Progeny 

Note that there are p progeny grown in r reps. Cov(progeny) refers to the covariance of the 
progeny, where the progeny can be full-sibs, half-sibs, S1-progeny, S2-progeny, testcross progeny, 
etc. The key is to know the progeny type and take advantage of the general rule that the variance 
among progeny is equal to the covariance of the progenies. 

Note the use of σ2
T instead of σ2

G in the within progeny line of the ANOVA table. This is because 
σ2

G is usually equal to σ2
A + σ2

D the total variance in a non-inbred random mating population. 
If the population does not have a random mating structure, then the total variance will be 
something other than σ2

A + σ2
D. For example, the total genetic variance for an F3 population is as 

in Equation 1. 

 Formula for total genetic variance for and F3 population. 

where: 
 = total genetic variance for F3 population, 

 = additive variance, 

 = dominance variance. 

Linear Models for Phenotypic Values 

The covariance of relatives is simply that relatives tend to show more phenotypic similarities 
than with each other than with unrelated individuals. For example let Xij represent an individual 
from the mating of parent i and parent j: 
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Table 2 Descriptions of relationships between individuals 
Xij and Xi’j’. 

Conditions Description 

Full-sibs 

Reciprocal Full-sibs 

Maternal half-sibs 

Paternal half-sibs 

Specifying covariance of relatives in terms of genetic variances has the following assumptions: 

1. Regular diploid and solely Mendelian inheritance 
2. No environmental correlations among relatives 
3. No gametic disequilibrium 
4. The relatives are not inbred 
5. The relatives are considered to be random members of some non-inbred population 

With these assumptions, we can specify the covariance of relatives as in Equation 2. 

 Formula for covariance of relatives, 

where: 
 = the coefficient of relative relationship, 

 = additive genetic variance, 

 = the dominance relationship coefficient, 
 = the dominance variance, 

 = the epistatic variances. 

Common Types of Relatives 

Using the result of Equation 1 for some common types of relatives, it can be shown that: 

Covariance of half-sibs with one common parent is represented by Equation 3. 
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 Formula for calculating covariance of half-sibs, 

where: 
 = inbreeding coefficient of parent A. 

Covariance of full-sibs with parents A and B is estimated using Equation 4. 

 Formula for calculating covariance of full-sibs, 

where: 
 = inbreeding coefficient of parent A, 
 = inbreeding coefficient of parent B, 

 = the epistatic variances. 

F2 and F3 Progenies 

Table 3 F3 progeny genotypes, frequencies, genotypic values and progeny mean values 
representation. 

 

 

Genotype 

 

 

Freq 

 

 

GV 

F3 Progeny  

 

F3 
Progeny 
Mean 

1/4 a 1 0 0 a 

1/2 d 1/4 1/2 1/4 1/2d 

1/4 -a 0 0 1 -a 

F2 and F3 Variances 

Total genetic variance among F2 individuals determined suing Eqaution 5: 
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 Formula for calculating total genetic variance among F2 individuals, 

where: 
 = genotypic values of AA or aa and Aa genotypes, respectively. 

Total F2 phenotypic variation: 

 Formula for calculating total phenotypic variance among F2 individuals, 

where: 

 = total phenotypic variance among F2 individuals, 

 = the non-genetic variation among F2 plants, 
 are as described previously. 

Recall that the F2 is our reference population for interpretation of genetic results. To estimate 
the total genetic variation of an F2, we need the parents and the F1 (to estimate environmental 
effects)as well as the F2 generation. 

F3 Variances 

F3 population mean is equal to 

Variance among F3 progeny means is determined using Equation 7. 

, 

 Formula for calculating variance among F3 progeny means, 

where: 

 = variance among F3 progeny means, 

 are as described previously. 

Variance within F3 progeny means is determined using Equation 8. 

, 

 Formula for calculating total phenotypic variance within F3 progeny means, 
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where: 

 = variance within F3 progeny means, 

 are as described previously. 

Total variance among F3 individuals is then estimated from Equation 9: 

 Formula for calculating total variance among F3 individuals, 

where: 

 = total variance among F3 individuals, 

 are as described previously. 

F3 progenies can be grown in replicated trials, so a set of equations like the following could be 
written to estimate the variance in different generations (Equation 10). 

, 

, 

, 

, 

 Formulae for calculating variances for F2 and F3, 

where: 
 = non-genetic variation among mean variance of F3 progeny, 

 = number of replications, 
 are as described previously. 

ANOVA for F3 Progenies 

ANOVA for F3 progenies can be calculated from a replicated experiment. 
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Table 4 ANOVA for F3 Progenies. 

Source df MS EMS 

Reps n/a n/a 

Progeny M3 

Error M2 

Total n/a n/a 

Within 
Progeny M1 

Then using Equation 11, 

 Formulae for calculating variances using MS and EMS, 

 is estimated as environmental variance within P1 or P2 plots (the inbred lines). 

Note that the phenotypic variance among F3 families is determined with Equation 12: 

, 

 Formula for calculating total phenotypic variance among F3 families, 

where: 

 = estimate of total phenotypic variance, 

 = within progeny variance, 
 = phenotypic variance among F3 families = the genotypic variance, 

 = number of replications, 
 = individuals withing progeny type. 

92  |  CHAPTER 7: ESTIMATES OF VARIANCE



Estimate of Heritability 

A type of heritability estimates on a progeny mean basis can be calculated as shown in Equation 
13: 

, 

 Formulae for calculating heritability on progeny entry mean basis, 

where: 
Terms are as described previously. 

Note that this estimate of heritability contains both additive and dominance variance. Recall that 
this is an estimate of intra-class correlation, thus it is a type of broad-sense heritability. 

Limitations of this method (often referred to as Mather’s methods) 

1. Estimates apply only to specific parents. 
2. Estimates for σ2

E1 may vary among generations. 
3. Estimates for a particular set of F2 plants can be obtained in only one environment. 
4. Linkage will bias estimates. 
5. Epistasis is assumed to be absent. 

Bi-Parental Progenies 

Bi-parental progenies are just crosses between individual plants; thus, genetically, they are full-
sibs. For example, in a random mating maize population, you could cross two individual plants 
reciprocally and bulk the seed from the two ears. This would produce enough seed to plant FS 
progeny in 10-20 replications. We could then think about n plants and making n / 2 full-sib 
families. The covariance then be computed using Equation 14. 
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Table 5 ANOVA Table for bi-parental progenies 

Source df MS EMS 

Reps n/a n/a 

Among 
families 

Error 

Total n/a n/a 

Within 
families 

 Extracting different variance components. 

Summary 

Table 6 Data from Cockerham, 1983. 

Progeny 
Type Cov(progeny) Total Variance, 

Half-sib 

Full-sib 

S1(F2:3) 

S2(F3:4) 

Sn(F4:5) 

S∞ 
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Expected Mean Squares 

The AOV tables cannot be interpreted without understanding the expected sources of variability 
represented by the Mean Squares. In the case of balanced field plot designs with only a few 
sources of variation, the expected mean squares are easily determined. If a particular design 
involves many sources of random and fixed factors, students have found the approach of 
Lorenzen and Anderson (1993, Design of Experiments: A No-Name Approach. p 71-72) to be 
useful. 

1. Write the terms of the model with associated subscripts down the left side of the page. 
Across the top, write the single letter subscripts (i,j,k, etc.). Above each subscript, place 
either F or R if the factor associated with that transcript is fixed or random. Above that, 
place the number of levels associated with that subscript (I, J, K, etc.). 

2. Enter a 1 in every slot where the subscript at the top is contained within brackets in the 
term at the left. 

3. Enter a 0 in every slot where the subscript at the top is fixed and also contained in the term 
as the left. Enter a 1 in every slot where the subscript at the top is random and also 
contained in the terms at the left. 

4. Fill in the remaining slots with the number of levels at the top of each column. 
5. To compute the Expected Mean Squares (EMS) for a given term having df > 0, start at the 

bottom and work up. Only consider terms whose indices include all the indices in the term 
whose EMS you are deriving. Compute the coefficient of this term by covering the columns 
corresponding to the indices in the term whose EMS you are deriving and multiplying the 
values in the remaining columns. If there is a 0 column that is not covered, this term need 
not be written in the EMS. A factor is considered fixed and denoted with a Φ only if all of 
its indices are fixed. Otherwise, it is considered random and denoted by the appropriate σ2 

term. 

Using the Algorithm 

Notice that this algorithm can be used to compute EMS for all terms in the model, including 
those that have zero df. A term that has zero df has no expected mean squares. For this reason, we 
will not compute EMS for terms having zero df even though such terms are in the algorithm to 
make the EMS of the other terms come out right. Note that this simple algorithm for determining 
the EMS in an AOV assumes that the data are balanced, i.e., each of the sources of variability 
(model parameters) have data for all levels, i, j, and k. 
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Step 1 

The phenotype Y for this typical field trial will be something like in Equation 15: 

, 

 Linear model for phenotype, 

where: 
 = phenotypic measure of trait for the jth genotype in the kth block nested within 

the ith environment, 
 = overall mean, 

 = ith environment, 
 = represents the kth block nested within the ith environment, 

 = the jth genotype, 
 = interaction effect between the jth genotype and the ith environment, 

 = the residual for genotype j in the kth block nested within the ith environment. 

Notice that this algorithm can be used to compute EMS for all terms in the model, including 
those that have zero df. A term that has zero df has no expected mean squares. For this reason, we 
will not compute EMS for terms having zero df even though such terms are in the algorithm to 
make the EMS of the other terms come out right. Note that this simple algorithm for determining 
the EMS in an AOV assumes that the data are balanced, i.e., each of the sources of variability 
(model parameters) have data for all levels, i, j, and k. 

To illustrate, let us consider a slightly more complex but typical RCBD design used by plant 
breeders to evaluate many genotypes grown in replicates at several environments for purposes 
of identifying and discarding poor-performing genotypes in a cultivar development project. 
Equation 15 will appear for each of the steps below. 

Write the terms of the model with associated subscripts down the left side of the page. Across the 
top, write the single letter subscripts (i,j,k, etc.). Above each subscript, place either F or R if the 
factor associated with that transcript is fixed or random. Above that, place the number of levels 
associated with that subscript (I, J, K, etc.). 

Factors: 

• Factor E – Fixed 
• Factor G – Random 
• Blocks – Random 
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Source 

E G R 

EMS F R R 

i j k 

n/a n/a n/a n/a 

n/a n/a n/a n/a 

n/a n/a n/a n/a 

n/a n/a n/a n/a 

n/a n/a n/a n/a 

, 

Step 2 

The phenotype Y for this typical field trial will be something like: 

, 

Enter a 1 in every slot where the subscript at the top is contained within brackets in the term at 
the left. 

Factors: 

• Factor E – Fixed 
• Factor G – Random 
• Blocks – Random 
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Source 

E G R 

EMS F R R 

i j k 

n/a  n/a n/a n/a n/a 

1 n/a n/a /n/a 

1 n/a n/a n/a 

1 1 n/a n/a 

1 1 1 n/a 

Step 3 

The phenotype Y for this typical field trial will be something like: 

, 

Enter a 0 in every slot where the subscript at the top is fixed and also contained in the term as 
the left. Enter a 1 in every slot where the subscript at the top is random and also contained in the 
terms at the left. 

Factors: 

• Factor E – Fixed 
• Factor G – Random 
• Blocks – Random 
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Source 

E G R 

EMS F R R 

i j k 

n/a n/a n/a 

0 1 n/a n/a 

1 n/a n/a n/a 

1 1 n/a n/a 

1 1 1 n/a 

Step 4 

The phenotype Y for this typical field trial will be something like this: 

, 

Fill in the remaining slots with the number of levels at the top of each column. 

Factors: 

• Factor E – Fixed 
• Factor G – Random 
• Blocks – Random 

Source 

E G R 

EMS F R R 

i j k 

0 G R n/a 

0 G 1 n/a 

E 1 R n/a 

1 1 R n/a 

1 1 1 n/a 
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Step 5 

The phenotype Y for this typical field trial will be something like: 

, 

To compute the EMS for a given term having df > 0, start at the bottom and work up. Only 
consider terms whose indices include all the indices in the term whose EMS you are deriving. 
Compute the coefficient of this term by covering the columns corresponding to the indices in the 
term whose EMS you are deriving and multiplying the values in the remaining columns. 

If there is a 0 column that is not covered, this term need not be written in the EMS. A factor 
is considered fixed and denoted with a Φ only if all of its indices are fixed. Otherwise it is 
considered random and denoted by the appropriate σ2 term. 

Factors: 

• Factor E – Fixed 
• Factor G – Random 
• Blocks – Random 

Source 

E G R 

EMS F R R 

i j k 

0 G R 

0 G 1 

E 1 R 

1 1 R 

1 1 1 
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Chapter 8: Mating Designs 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

There are many mating designs developed for the purpose of estimating the magnitude of 
genetic variability in a reference population. This information is most often useful to the plant 
breeder who is developing a new breeding program in a new crop species or developing a novel 
germplasm resource for established crop species. For example, large estimates of additive genetic 
variability and small estimates of genotype by environment variability suggest that rapid progress 
from selection can be made with minimal allocation of testing resources. While most recently 
trained plant breeders will assume responsibilities for established plant breeding programs, most 
established programs begin with an evaluation of genetic variability using one of the many 
mating designs. Thus, we feel it is instructive to understand the genetic basis upon which these 
programs were established. 

The choice of mating designs is based on: 

1. The natural mode of reproduction and mating flexibilities of the species. 
2. The objective(s) in estimating genetic variances such as: 

◦ General interest in knowledge of gene action for quantitative characters 
◦ Making a choice among alternative selection and breeding procedures 
◦ The prediction of response to selection. 

3. Joint purposes such as estimating genetic variances and simultaneously selecting among 
progenies or evaluating hybrid combinations 

4. The precision of the estimates. 

Learning Objectives 

Students will learn about methods used to evaluate the potential for genetic improvement in 
germplasm with unknown estimates of heritability through the application of the Variance-
Covariance principle in various types of mating designs. 
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Design Setup 

Setting up the treatment and experimental designs for mating designs creates unique challenges. 
Several things need to be considered: 

• Ease of making crosses in the species. 
• Inbreeding generation of the parents of the crosses. 
• The number of parents that will be used (male and female). 
• Fixed versus random parents. 
• The type of mating design to be used. 
• The type of experimental design to be used. 
• The environmental design to be used. 

Diallel Crosses 

Diallel matings (Table 1) are used to make inferences regarding the types of gene effects 
controlling traits. Diallels are particularly important in cross-pollinated crops and for 
determining the importance of general combining ability and specific combining ability. 
Consider the following general mating scheme. This scheme is very similar in structure to the 
two-way tables we have seen for studying interactions. 

Table 1 General mating scheme for diallel 

Parents P1 P2 P3 P4 Pn Totals 

P1 Y11 Y12 Y13 Y14 Y1n Y1. 

P2 Y21 Y22 Y23 Y24 Y2n Y2. 

P3 Y31 Y32 Y33 Y34 Y3n Y3. 

P3 Y41 Y42 Y43 Y44 Y4n Y4. 

Pn Yn1 Yn2 Yn3 Yn4 Ynn Yn. 

Totals Y.1 Y.2 Y.3 Y.4 Y.n Y.. 

Number of Diallel Crosses and Entries 

Let us consider the number of diallel crosses for n parents with and without reciprocal crosses. 
The number of entries is the number that would have to be evaluated if the parents were included 
in the experiment (Table 2). 
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Table 2 Number of crosses and entries possible with different numbers of parents with and without 
reciprocal matings. 

Without Reciprocals With Reciprocals 

No. of 
Parents 

No. of 
Crosses 

Number of 
Entries 

No. of Crosses Including 
Reciprocals 

Number of 
Entries 

5 10 15 20 20 

6 15 21 30 30 

7 21 28 42 42 

8 28 36 56 56 

9 36 45 72 72 

10 45 55 90 90 

11 55 66 110 110 

12 66 78 132 132 

13 78 91 156 156 

14 91 105 182 182 

15 105 120 210 210 

20 190 210 380 380 

50 1225 1275 2450 2450 

100 4950 5050 9900 9900 
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Types of Diallel Analysis 

Table 3 Fixed versus random effects analysis based on method and entries makeup. 

Model Method Parents Included Crosses Reciprocals 

I (Fixed) 1 Yes Yes Yes 

I (Fixed) 2 Yes Yes No 

I (Fixed) 3 No Yes Yes 

I (Fixed) 4 No Yes No 

II (Random) 1 Yes Yes Yes 

II (Random) 2 Yes Yes No 

II (Random) 3 No Yes Yes 

II (Random) 4 No Yes No 

Common Diallel Experiment 

The most common diallel experiment is conducted with selected parents, which means a fixed 
effects analysis where only gene effects and not variance will be estimated (Table 3). The reason 
for this is simple: It is very hard to sample a population adequately with a diallel. Diallels are 
useful mating designs, however, despite this limitation. 

Therefore, we will not present any analyses related to estimating variance components — only 
gene effects. This makes this section somewhat out of place, but it fits in with the other mating 
designs from the structural point of view. The analyses we will present are a combination of those 
presented by Griffing (1956) and Gardner and Eberhart (1966). 

Methods 2 and 4 are the most common types of diallels. Most scientists grow the parents and 
the crosses or just the crosses. The method 4 analysis is, however, the most commonly used 
analysis because Griffing assigns specific combining ability effects to the parents per se, and 
these are hard to interpret relative to Sprague and Tatum’s (1942) definitions of general and 
specific combining ability. 

The general model underlying the diallel can be written as in Equation 1: 

 General linear model for diallel design experiments. 

where: 

CHAPTER 8: MATING DESIGNS  |  105



 = the mean, 
 = the general combining ability effect (marginal effect) of the ith parent, 
 = the general combining ability effect (marginal effect) of the jth parent, 
 = the specific combining ability effect (interaction effect) of the ith and jth 

parents, 
 =  the effect of the kth replication, 

 = the residual (or error). 

An ANOVA Table for Diallels is shown in Table 4. 

Table 4 ANOVA Table for Diallels. 

Source df 
df 
(n = 
10) 

SS MS EMS 
(Model I – Fixed Effects) 

Replications n/a n/a n/a 

Entries 44 

Among 
Margins 9 

Among 
cells/
Margins 

35 

Error 
44

F-Tests 

Model I F-Tests: For among cells/margins and among margins are, respectively, 

F = \frac{M_{22}}{M_1} \text{, and } 

These F-tests evaluate whether differences among the parents and crosses within parents are 
significant. Also, it is possible to show that the effects can be estimated using Equation 2: 
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, 

, 

, 

 Formulae for estimating mean, gca, and sca effects. 

where: 
 = estimated mean, 
 = number of parents, 
 = estimate of gca effect of genotype i, 
 = estimate of sca effect of genotypes i and j, 
 = grand total, 
 = sum of parent i across all parents, 
 = sum of parent j across all parents, 
 = phenotype of cross ij . 

The variances of the effects can be estimated with Equation 3: 

 Formulae for estimating variances of estimated of mean, gca, sca effects and error, 

where: 

CHAPTER 8: MATING DESIGNS  |  107



 = estimates variance of average phenotype, 

other terms are as defined previously. 

Gardner and Eberhart Diallel Analysis II 

The Gardner and Eberhart Analysis II for the diallel is a more general analysis designed for the 
case of when the diallel includes random mating varieties. The model is best laid out by starting 
with the following single locus theory for the  variety and  locus (Table 5): 

Table 5 Frequencies and genotypic values for genotypes. 

Frequency Genotype Genotypic value 

AA 

Aa 

aa 

Where, . 

The population mean can be written as in Equation 4: 

\mu&#039; \sum_i(2p_{ji}-1) \alpha_{i}  + 2\sum_i(p_{ji}-p_{ji}^{2})\delta_i 

 Formula for calculating the  population mean, 

where: 
 = frequencies of the two allele. 

 = average genotypic value, 
 = coded genotypic values. 

Equations 

Let . 

Similarly, let . 
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Then, the population mean can be written as in Equation 5: 

 Formula for the population mean. 

where: 
 = the mean, 
 = average genotypic value of AA & aa, 

 =genotypic value of AA, aa genotypes, 
 = genotypic value of Aa genotype. 

A population cross mean can be written as in Equation 6: 

. 

 Formula for the population cross mean. 

where: 
 = mean of the “variety cross” from two parents, 

 = the mean of all crosses, 
 = the additive effect, 
 = the dominance effect, 

 = the heterosis effect. 

If the varieties, varieties selfed, population crosses, population crosses selfed, and population 
crosses random mated are included in the analysis, then all of these genetic effects can be 
estimated. Usually, this is not the case, and only varieties and variety crosses are included in the 
analysis, which are confounded, and they have to be estimated together. We can then define the 
following parameters: 

The mean of all parental varieties included in the analysis is written as in Equation 7: 

 Formula for mean when all parental varieties are included. 

where: 
 = the mean of all parental varieties included in the analysis, 

 = the mean, 
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 = dominance effect, 
 = average dominance effects. 

The variety effect when parents are included in the analysis is written as in Equation 8: 

 Formula for estimating variety effects with parents included. 

where: 
 = the variety effect when parents are included, 

 are as defined previously. 

Models 

We can then fit the following four models to the data (Equation 9): 

 Linear models for estimating different genetic effects on phenotype, 

where: 

, 

 = phenotype of j by j’ progeny. 

ANOVA Table 

The following ANOVA table can be written as in Table 6: 
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Table 6 ANOVA Table for Gardner and Eberhart Diallel Analysis II. 

Source df Sum of squares 

Populations 

    Varieties 

    Heterosis

        Average 

        Variety 

        Specific 

Equivalent Analysis 

An equivalent analysis can be made with just the crosses as follows: 

The mean of crosses in the diallel can be estimated as follows: 

; 

The variety effect in crosses = general combining ability effect = , then the mean of 

crosses is written as in Equation 10: 

 Model for analysis with only crosses included. 

where: 
 = specific heterosis from variety j by variety j’ mating, 

, 

. 
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Analysis III of Gardner and Eberhart 

The following ANOVA (Table 7) can be written (Analysis III of Gardner and Eberhart) 

Table 7 ANOVA Table for Gardner and Eberhart Diallel Analysis III. 

Source Degrees of Freedom Sum of squares 

Population n/a 

      Varieties ( )    

      Varieties vs. crosses ( )    

      Crosses( ) 

           GCA ( )               

           SCA ( )               

The analysis of Crosses, GCA, and SCA is all that can be done if only the crosses are included in 
the analysis. This analysis is equivalent to the Model 4 analysis of Griffing. If varieties or parents 
are also included, then the analysis, Varieties, and Varieties vs. Crosses can also be calculated. 

Analysis III is related to Analysis II in the following ways that the (sjj’) are the same in the two 
analyses S’21 = S”2, meaning that average heterosis is simply a contrast of the mean of the varieties 
with the mean of the crosses (Equation 11). 

 Formula for calculating average heterosis. 

where: 
 = effects of variety 1, 
 = effects of variety 2, 
 = effects of crosses, 
 = GCA effects, 
 = SCA effects. 
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North Carolina Design I 

Fig. 1 North Carolina Design I (NC I), Nested Mating Design (A/B). 

• Consider m male plants: 
• each of which is mated to f female plants, 
• to produce n full-sib families within each male, 
• for a total of mf half-sib families. 
• There is a total of m half-sib families. 
• Different female plants are used to cross with each male. 
• The progeny P are grown in a replicated experiment design. 

The model for analysis is written as in Equation 12: 

 General linear model for NC I experiments. 

where: 
 = the mean, 

 = the effect of male i, 
 = the effect of female j when crossed to male i, 

 = replication effect, 
 = the residual. 

ANOVA Table 

Then the ANOVA (Table 8) can be written as: 
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Table 8 ANOVA Table for Gardner and Eberhart Diallel Analysis III. 

Source of 
Variation d.f. MS EMS 

Replications n/a n/a 

Males M4 

Females/Males M3 

Error M2 

Total n/a n/a 

Within M1 

The table can be rewritten in terms of the covariance of relatives as follows (Table 9): 

Table 9 ANOVA Table for Gardner and Eberhart Diallel Analysis III. 

Source of 
Variation d.f. MS EMS 

Replications n/a n/a 

Males M4 

Females/Males M3 

Error M2 

Total n/a n/a 

Within M1 

Variance Estimates 

Estimation of variance of the various components is as in Equation 13: 
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 Formulae for calculating variance components for NC I. 

where: 
 = variance of males, 

 = variance of males within females, 

 = covariance of half-sibs, 
 = covariance of full-sibs. 

So, ignoring epistasis, the variances are written as in Equation 14: 

. 

 Alternative formulae for calculating variance components. 

where: 
 = the additive variance, 

 = the dominance variance, 

 = the inbreeding coefficient of the male parent, 

 = estimated variance of male within females, 

 = the inbreeding coefficient of the female parent, 
 = effects of females. 

Consider the case when all the parents are noninbred, i.e., Fm = Ff = 0. The variances are written 
as in Equation 15: 

 Formulae for calculating variance component when all the parents are 
noninbred. 

where: 
 are as defined previously. 

When both the male and female parents are inbred, i.e., Fm = Ff = 1, then the variances can be 
estimated as written in Equation 16: 
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 Formulae for calculating variance component when all the parents are inbred. 

where: 
 are as defined previously. 

North Carolina Design II 

Fig. 2 North Carolina Design II (NC II), Mating Design (AB). 

• Consider m male plants, 
• each of which is mated to f female plants, 
• to produce f full-sib families within each male, 
• for a total of mf half-sib families. 
• There is a total of m f half-sib families. 
• The same female plants are crossed with each male. 
• The progeny P are grown in a replicated experiment design. 

The design is related to the diallel and another simpler way to represent the design is (Table 10): 

Table 10 North Carolina Design II arrangement. 

Parents M1 M2 M3 M4 Totals 

F5 Y15 Y25 Y35 Y45 Y.5 

F6 Y16 Y26 Y36 Y46 Y.6 

F7 Y17 Y27 Y37 Y47 Y.7 

F8 Y18 Y28 Y38 Y48 Y.8 

Totals Y1. Y2. Y3. Y4. Y.. 
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Model 

The model for analysis is written as in Equation 17: 

µ

 Formulae for calculating variance components for NC II. 

where: 
 = mean, 

 =the effect of male i, 
 = the effect of female j, 

 = the interaction effect of female j when crossed to male i, 
 = replication effect, 

 =the residual. 

ANOVA Table 

The ANOVA is shown in Table 11. 

Table 11 ANOVA Table for North Carolina Design II. 

Source of Variation d.f. MS EMS 

Replications n/a n/a 

Males (M) M5 

Females (F) M4 

M x F M3 

Error M2 

Total n/a n/a 

Within M1 

Covariance of Relatives 

The table can be rewritten in terms of the covariance of relatives as follows (Table 12): 
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Table 12 A general ANOVA table for covariance of relatives. 

Source of Variation d.f. MS EMS 

Replications n/a n/a 

Males (M) M5 

Females (F) M4 

M x F M3 

Error M2 

Total n/a n/a 

Within M1 

Estimation 

Variance components are estimated as written in Equation 18: 

 Formula for estimating covariance of relatives, 

where: 
 = estimated variance of males, 

 = estimated variance of females, 

 = estimated variance of male by female cross (full-sibs), 

 = covariance of full-sibs, 
 = covariance of half-sibs with common male, 

 = covariance of half-sibs with common female. 

Variance Estimates 

Ignoring epistasis, variance components are estimated as written in Equation 19. 
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 Formula for calculating variance estimates, ignoring epistasis. 

where: 
 are as defined previously. 

Consider the case when all the parents are noninbred, i.e., Fm = Ff = 0. Variance components are 
estimated as written in Equation 20: 

 Formulae for estimating variance components when male and female parents are 
noninbred, 

where: 
 are as defined previously. 

When both the male and female parents are inbred, i.e., Fm = Ff = 1, then variance components 
are estimated as written in Equation 21: 

 Formulae for estimating variance components when male and female parents are 
inbred, 

where: 
 are as defined previously. 
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North Carolina Design III 

The main use of Design III is for estimating the average degree of dominance. 

North Carolina Design III Backcross Design is shown in Fig. 3. 

Fig. 3 North Carolina Design 
III (NC III), Mating Design 
(F2 backcrossed to inbred 
parents). 

This design involves crossing two inbred lines and obtaining the F1 and F2 generations. An 
individual F2 plant is then backcrossed to each of the inbred parents generating a pair of progeny 
using the F2 plants and pollen parents. Then for n F2 plants, there are 2n progenies produced, 
and the model is as written in Equation 22: 

µ

 Linear model for estimating average degree of dominance. 

where: 
 = the mean, 
 = contrast of the inbred parents i = 1, 2 

 = the effect of F2 parent j, 
 = the interaction effect of inbred parent i and F2 plant i, 

 = replication effect, 
 =the residual. 

ANOVA Table 

An ANOVA Table for North Carolina Design III is shown in Table 13. 
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Table 13 ANOVA Table for North Carolina Design III. 

Source of Variation d.f. MS EMS 

Replications n/a n/a 

Inbred Lines  n/a n/a 

F2 parents M3 

F2 parent x inbred line M2 

Error M1 

Total n/a n/a 

Estimation 

Variance components are estimated as written in Equation 23: 

 Formulae for estimating effects of parents and the interaction effect of inbred 
parents and F2 plants, 

where: 

 = the summation is over i loci, 

 = estimated variance of F2 parents i = 1, 2 

 = estimated variance of the interaction effect of the parent and F2 plant. 

F-Tests 

Remember that in an F2 population, additive and dominance variances are written as in Equation 
24 

 Formula for total genetic variance for and F3 population, 

so that variance components are estimated as written in Equation 25, 
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 Formula for total genetic variance for and F3 population. 

where: 
 are as defined previously, 

 = additive variance, 

 = dominance variance. 

Note that this design is very specialized for the specific case of F2 populations when p = q = 0.5. 
This design provides exact F-tests of two important hypotheses: 

1. The null hypothesis of no dominance. This is tested by: F=M2/M1, and if this F-test is 
significant, then it means that  and there is no dominance. 

2. The null hypothesis is that dominance is complete. If there is complete dominance, then 
the ratio, M3/M2=1. 

A significant departure of this ratio from one indicates that  departs significantly from 1. 
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Chapter 9: Selection Response 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Selection is the crux of crop improvement and makes use of the art and science concepts to 
ensure the success (gains derived) of a breeding program or specific project. This chapter explains 
principles and practices related to genetic gain. 

Learning Objectives 

• Explain the role of selection on genetic improvement. 
• Explain all of the components of realized and predicted genetic gain. 
• Explain why realized genetic gains are always less than predicted genetic gains. 
• Explain the role of replication in multi-environment tests on predicted and realized genetic 

gains. 

Underlying Theory of Selection 

Fig. 1 The normal distribution. 

Let  be the mean phenotypic value of a quantitative trait that is normally distributed in a large 

random mating population (Fig. 1). Also, designate  as the mean of a selected proportion P of 
this population, where c is the truncation point of selection and Z is the height of the ordinate at 
the selection truncation point. 
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The selection differential is defined as in Equation 1: 

. 

 Formula for calculating selection differential. 

where: 
 = selection differential, 

 = mean of selected proportion, 

 = mean of the population. 

If is the phenotypic variance in the population, then the standardized selection differential 
can be written as in Equation 2: 

. 

 Formula for calculating standardized selection differential. 

where: 
 = standardized selection differential; also, is the number of standard deviations 

represented by the selection differential, S, 
 = square root of phenotypic variance in the population, 
 = mean of selected proportion, 

 = mean of the population. 

Selection Response 

While may be distinctive relative to  , of greater interest are the phenotypes of the progeny 

derived from crosses among the selected parents . The predicted response of progeny to the 
selection of their parents can be derived from the relationship between parent and offspring as 
follows (Fig. 2). Designate R as the response to selection measured in the offspring (represented as 
a deviation from the population mean). S is the selection differential (represented as a deviation 
from the population mean) as described in the previous section. 
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Fig. 2 Parent-offspring regression plot. 

Genetic Gain 

The response to selection ( R ) can be written simply as in Equation 3: 

. 

 Formula for calculating response to selection. 

where: 
 = response to selection, 

 = the regression coefficient of offspring on the mid-parent value, 
 = the selection differential. 

The regression coefficient of offspring on the mid-parent value can be written as in Equation 4: 

 Formula for calculating the regression coefficient. 

where: 
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 = the covariance of offspring on mean of parents, 
 = the variance of mid-parent, 

 = the phenotypic variance. 

Equation 4 is written that way because: 

 Formula for calculating the mean of parent phenotype. 

where: 
 = the phenotype of the male parent, 

 = the phenotype of the female parent. 

Also, we can show that: 

Therefore, R is written as in Equation 6: 

 Formula for calculating the change in genetic gain. 

where: 
 = the rate of genetic gain per cycle, 

 = the narrow sense heritability, 
 = the standard deviation of the phenotype, 

 are as defined previously. 

R is the selection response or Genetic Gain, as Lush defined it in 1940. This equation for ΔG, 
also known as the Breeder’s Equation, based on the regression of offspring values on mid-
parent values, is difficult to apply directly to plant breeding systems because plant breeders 
typically evaluate hundreds of replicated individuals representing thousands of genotypes grown 
in replicated plots in dozens to hundreds of environments. Unlike most animal systems, it is 
possible to replicate progeny genotypes due to the diversity of reproductive biology that is 
available to plant breeders: clonal propagation, doubled haploids, and tolerance to inbreeding 
through self-pollinations for multiple generations. In the last example, the response units can be 
several generations removed from the parental (crossing) generation. The type of reproductive 
biology will affect the details of how we estimate the response to selection, ΔGc, also referred to 
as the “Rate of Genetic Gain”, per cycle. 
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Heritability on an Entry-Mean Basis 

Recall plant breeders often report heritability from field experiments on an entry-mean basis 
represented as in Equation 7: 

 Formula for calculating heritability on entry mean basis. 

where: 
 = the genotypic variance, 

 = the genotype by environment variance, 

 = the residual or error variance, 
 = the number of replications 
 = number of environments. 

Although Equation 7 is similar to Lush’s broad sense heritability, it is not exactly the same 
concept because it can be ‘adjusted’ by adding replicates and environments to reduce the impact 
of σ2

GE and  on the estimated phenotypic variance. 

The problem for plant breeders is that the concept of evaluating individual plants and the 
performance of their progeny to obtain an estimate of heritability simply is of no practical use for 
most crops where plot performance is the basis for selection. Hanson attempted to address this 
by framing the multiple concepts of heritability within the context of genetic gain (1963). 

Hanson defined heritability as “the fraction of the selection differential expected to be gained 
when selection is practiced on a defined reference unit.” Given the standard definition for 

selection response is , we can then solve for h2 using the 

expression in Equation 8: 

 Formula for estimating realized heritability, 
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where: 
 are as defined previously. 

That is the standardized response to selection or realized heritability. 

Context of Heritability 

Within the framework of genetic gain, Hanson defined heritability in such a manner as to be 
consistent with the original concept while at the same time taking into consideration that it has 
little meaning unless the selection units (entry means) and response units are defined. Thus, when 
plant breeders wish to communicate information about heritability, they should specify: 

1. A reference population of genotypes. 
2. A reference population of environments. i.e., the target environments. 
3. Selection units 
4. Response units 

This context emphasizes the purpose of obtaining variance component estimates, usually for the 
purpose of comparing genetic gains (ΔG) under various possible breeding procedures. The results 
are used to make decisions about which procedure to employ. Indeed, it is in this context that 
variance components of heritability are used as “plug-in values” (Sprague and Eberhart, 1977) for 
a six-step decision-making algorithm that uses ΔG as an arbiter for comparing breeding methods 
(Fehr, 1994; Chapter 17). Actually, this back-of-the-envelope algorithm is fairly insensitive to the 
estimated heritability values, and there are more effective means of optimizing genetic gain, 
number of generations, and costs. 
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Holland’s Synthesis 

A thorough review of heritability and how it should be interpreted to compare ΔG by plant breeders 
was given by Holland et al, (2003). The review was essentially an update to a review by Nyquist (1991), 
where the updates were based on computational techniques, REML in particular, for obtaining 
appropriate estimates of variance components. He indicated that plant breeders have traditionally 
used the method of moments (covered in later slides) to estimate genotypic and phenotypic 
correlations between traits on the basis of a multivariate analysis of variance (MANOVA) and pointed 
out the key drawbacks of using the method that include the possibility of obtaining estimates outside 
of parameter bounds, reduced estimation efficiency, and ignorance of the estimators’ distributional 
properties when data are missing. 

With Hanson’s response, the response to selection can be rewritten as , where  is 
the regression coefficient of the response units on the selection units and is equal to 

. 

Family Structure 

Assume our selection and response units are represented by some family structure, say half-
sibs, or full-sibs, or recombinant inbred lines, as examples. Also, recall that we can equate the 
genotypic variance component, designated as f for family relationships, to the genetic covariance 
of relatives. Thus, the Cov(R,S) = Var(f). Also, note that the Var(S) is the phenotypic variance among 
the entry means. Thus, BSR is the proportion of variance among family units relative to the 
phenotypic variance among entry means. We might refer to this as the heritability of the family 
units represented in Equation 9: 

 Formula for estimating heritability of family units, 

where: 

 = the family unit variance, 

 = the phenotypic variance. 

If the replicated plots consist of half-sibs from a random mating population, then the variance 
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component among half-sibs on an entry mean basis is equal to the covariance of the half-sibs 
(Equation 10), ignoring epistasis: 

 Formula for estimating covariance of half-sibs, ignoring epistasis, 

where: 
 = the inbreeding coefficient 

 = the additive variance. 

Narrow-Sense Heritability of Half-Sibs 

Thus, it is possible to utilize the estimated variance components from an ANOVA to estimate 
a “narrow sense heritability”, h2, by simply multiplying this variance component by 4/(1+F) and 
plugging the value into Equation 7 as in Equation 11; all terms are as defined previously: 

 Formula for estimating narrow sense heritability of half-sibs. 

Notice that this is not the same as the original narrow sense heritability as defined by Lush (1940), 
but is a narrow sense heritability for a population of half-sibs. 

Next, consider the numerator in Equation 11 above. In the case of half-sibs, we have learned that 
the variance of family units is represented as in Equation 12. 

 Alternative formula for estimating family units variance, 

where: 
 = the additive by additive interaction variance. 
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Covariance Estimation 

Again, if the data are not balanced, the variance component will not be estimated correctly unless 
REML is used. Let us assume that we obtain a ‘best’ estimate for σHS, either because our data 
are balanced or we have used REML. Should we use the previous equation for the Cov(R,S)? To 
answer this, we have to recognize that there is a genetic relationship between selection units 
and response units, i.e., there is a pedigree relationship or coefficient of coancestry between the 
selection and response units, and Equation 12 does not take this into consideration. In the case 
where both selection units and response units are half-sibs, the Cov(R,S) is represented as in 
Equation 13 

 Formula for estimating covariance of response units and selection units, 

where: 
 are as defined previously. 

Note that if Equation 13 is used, a slightly biased estimate of heritability will result even if the 
best estimates of variance components are obtained. This is due to epistatic variance. For other 
types of progeny, the bias in the numerator can be much larger. Let us look at estimates based on 
Equation 13 for some example cases/progeny types. 

Example A 

Estimation of Narrow sense heritability from a half-sib family experiment with data obtained on 
individual plants in one environment. 

1. Heritability on an individual plant basis 

◦ Selection among individual plants 
◦ 1 Replication in 1 environment 
◦ Response is measured in outbred progeny 
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where:  is the estimated family by environment interaction variance;  is the estimated 

error variance, and  is the estimated within family variance. 

Example B 

Estimation of Narrow sense heritability from a half-sib family experiment with data obtained on 
individual plants in multiple independent environments. 

2. Family heritability on a plot basis (half-sib family, single plot mean values) 

◦ Selection among plot means 
◦ 1 Replication in 1 environment 
◦ Response is measured in outbred progeny 

where:  is the number of entries or plots; all other terms are described in example A. 
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Computational Considerations 

Example C 

Estimation: Narrow sense heritability estimated from a half-sib family experiment with data 
obtained on individual plants in multiple independent environments. 

3. Family heritability 

◦ selection among half-sib family mean averaged over environments 
◦ outbred progeny 

The only way to remove the bias is to include both selection units and response units in the 
analyses. This is not the same thing as including both groups in the same sets of 
environments. 

Method of Moments 

Next, let us explore the computational nuances of these concepts in the context of plant breeding 
populations. Consider first the evaluation of half-sibs from a random mating population in 
a replicated Multi-Environment Trial. Let the phenotypic variance of the selection units be 
designated σp

2. From an introductory course in statistics, we were taught that the phenotypic 
variance on an entry means basis can be obtained directly from Ordinary Least Squares (OLS) 
ANOVA by equating the estimated Mean Squares (MS) with Expected Mean Squares (EMS). This 
is also known as the Method of Moments (MoM). Thus, an estimate of phenotypic variance, σp

2 

represented as in Equation 14: 
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 Formula for estimating phenotypic variance, 

where: 

 = the mean square, i.e., family variance, 

 are as defined previously. 

When to Use Method of Moments 

It turns out that the application of MoM is appropriate only if the data are from a balanced 
experiment, i.e., the number of genotypes, in this case, families or genotypic entries, is the same 
across reps and environments. Recall that lsmeans are useful for estimates of entry means in the 
case of unequal replication per environment. Next, we need to learn how to obtain estimates of 
the variance components for unbalanced data sets. 

The most obvious problem is that the coefficients of the variance components are not equal to 
the products of the numbers of reps and environments in the EMS. Addressing this problem is 
fairly straightforward (Milliken and Johnson, 1992). A more difficult problem is that the estimates 
of the variance components themselves are no longer the “best” estimates. The solution, as 
described by Holland et al (2003) is to obtain Restricted Expected Maximum Likelihood (REML) 
estimates in a Mixed Model Procedure (MMP). 

REML 

For example, let us consider the case of half-sib progeny. Recall Equation 12: 

If the data are not balanced, the variance component will not be estimated correctly unless REML 
is used. Let us assume that we obtain a ‘best’ estimate for σHS; either because our data are 
balanced or we have used REML. Should we use Equation 8 for the Cov(R,S)? To answer this, 
we have to recognize that there is a genetic relationship between selection units and response 
units, i.e., there is a pedigree relationship or coefficient of coancestry between the selection and 
response units, and Equation 12 does not take this into consideration. In the case where both 
selection units and response units are half sibs, the Cov(R,S) is represented as in Equation 13: 

134  |  CHAPTER 9: SELECTION RESPONSE



Thus, if Equation 13 is used, a slightly biased estimate of heritability will result even if REML-
based estimates of variance components are obtained. For other types of progeny, the bias in the 
numerator can be much larger. Thus, the predicted genetic gain that might be used for planning 
purposes or comparison of possible breeding methods will be overestimated. 
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Chapter 10: G x E 
William Beavis; Kendall Lamkey; Katherine Espinosa; and Anthony Assibi Mahama 

One of the most difficult aspects of plant breeding involves making decisions about 
environments to target for the development of new cultivars. This challenge is not especially 
difficult if cultivars are adapted to large geographic regions with little variability among 
environments or if there is significant variability among environments, but potential cultivars 
respond similarly to the environmental differences. However, if potential cultivars do not respond 
similarly to environmental differences within a targeted set of environments, i.e., there are 
genotype-by-environment interactions, decisions on which genotypes to develop can be difficult. 
Herein, we explore the impacts of environments on genotypes in cultivar development programs. 

Learning Objectives 

• Conceptual types of GxE interactions. 
• Decompose GxE interactions into heterogeneous variability and inconsistent rankings. 
• Leverage information on heterogeneous variance and inconsistent rankings to meet breeding 

objectives. 

Environmental Components of Variance 

Recall that our working model for the phenotype includes genotypic and non-genotypic 
(environmental) sources of variability (Equation 1): 

 Linear model for sources of variability in phenotype. 

where: 
 = phenoype, 
 = overall mean, 
 = genotype effects , 
 = non-genetic of environment effects. 

Briefly, we consider the components of E as shown in Fig. 1. 
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Fig. 1 Illustration of relationships among 
environments, genotypes, and phenotypes. 

Many Meanings of Environment 

Micro-environmental effects: the environment of a single organism as opposed to that of 
another growing at the same time and in almost the same place. 

• All things except genotype affect a plant’s development. Note that the probability that two 
plants in the same field will experience the same environment is infinitesimally small. 
◦ Physical and chemical properties of the soil 
◦ Climatic variables (rain, temperature, etc) 
◦ Solar radiation 
◦ Biotic stresses 

Macro-environmental effects: the general environment associated with a field site over a period 
of time. 

• Different class of environments in one area or time than another 
• A collection of micro-environments 

Environmental Sources of Variation 

Environmental sources of variation can also be hierarchically modeled to consist of variability 
among environments and within environments (Equation 2): 

 Formula for among and within sources of variability. 
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where: 
 = environmental variance, 

 = among environment variance, 

 = within environment variance. 

 

Fig. 2 No interaction type phenotype 
response in two environments. 

 Model for phenotypic response. 

where: 
 = phenotype, 

 = overall mean, 
 = genotype effect, 
 = environment effect. 

From the beginning of field assessments of clonally propagated plants, we have been able to 
recognize variability within and among locations (environments). As soon as we could evaluate 
more than one replicated genotype, we also began to recognize patterns of phenotypic responses 
to environments. In 1964, Allard and Bradshaw provided a simple classification scheme of the 
types of phenotypic responses that could happen using two genotypes (designated A and B) and 
two environments (designated X and Y) and modeled as in Equation 3. The first type of response 
(Type 1) reveals that there is a difference of 2 units between the genotypes and a difference of 1 
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unit between the environments (Fig. 2). They also recognized a second type of response (Type 2) in 
which the difference between genotypes was one unit while the difference between environments 
was 2 units. Both types of responses indicate no interaction. 

Simple Types of GxE Interactions 

These types of interaction can all be modeled as (Equation 4): 

 Model for phenotype response with GxE present. 

where: 
 = phenotypic response, 

 = overall mean, 
 = genotype effects, 
 = environment effects, 

 = genotype by environment interaction effect. 

Type 3 GxE Interaction 

Allard and Bradshaw recognized that there could be a lack of consistent responses by two 
different genotypes in two environments. The lack of consistent responses by genotypes to 
different environments had been recognized as genotype by environment interactions since the 
beginning of replicated trials, and Allard and Bradshaw classified these into four types of GxE 
for two genotypes in two environments. 

A type 3 GxE response (Fig. 3) was based on the heterogeneity of genotypic variability between 
environments. Assuming that larger phenotypic values are desired, in GxE types 1,2, and 3, 
genotype A is better adapted to both types of environments. 
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Fig. 3 Genotype response with 
interaction in two environments. 

Type 4 GxE Interaction 

A type 4 GxE interaction is due to a combination of heterogeneous genotypic variability and a 
failure of the genotypes to have correlated responses (change of rank) across the environments 
(Fig. 4). 

Fig. 4 Genotype response with 
interaction (lines intersect) in two 
environments. 
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Type 5 GxE Interaction 

A type 5 GxE is due to a failure of the genotypes to have correlated responses across the 
environments, while the genotypic variability is homogeneous between the environments (Fig. 
5). If environments X and Y represent typical types of environments in a market, then there 
are unique best genotypes for each type of environment; neither is broadly adapted to both 
environments. 

Fig. 5 Genotype response with 
interaction (lines intersect) in two 
environments. 

Type 6 GxE Interaction 

A type 6 GxE interaction illustrates a ‘racehorse’ response by Genotype A. It takes full advantage 
of favorable environment X while failing under the stressful environment Y. This type of GxE also 
illustrates a more ‘stable’ response by Genotype B. The question for the plant breeder is whether 
to develop both types of cultivars or just one. 
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Fig. 6 Genotype response with 
interaction (lines intersect) in two 
environments. 

Complex Types of GxE Interactions 

As the number of environments and genotypes increases, the ability to sort out the types of 
GxE interactions becomes more difficult. For example, consider the data and plot in Fig. 7. It 
is likely that all types of GxE interactions are present in these data. If all types of GxE are 
present, are there prevalent types of GxE? Do the genotypes behave the same way in some pairs 
of environments? What is the nature of GxE between all pairs of environments (1:2, 1:3, 2:3 …)? 

To answer these questions, multi-variate statistical techniques, sometimes referred to as 
pattern analyses, are used to discover and summarize consistent patterns in large data sets. 
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Fig. 7 Sample of yield values from ~100 entries taken at three environments from a 6500-entry trial grown 
at 20 environments. 

Pattern Analysis Methods 

A partial listing of these pattern analysis methods would include Cluster Analyses (CA), Principal 
Component Analysis (PCA), Additive Main and Multiplicative Interaction (AMMI) models, Sites 
Regression models, Partial Least Squares, Factorial Regression, Linear Bilinear Mixed Models, 
Generalized Linear Models, Support Vector Machines, Bayesian Networks, Reproducing Kernel 
Hilbert Spaces, etc. 

The development of these methods was motivated by the need to find patterns in physical and 
chemical spectra 25 to 50 years ago. These methods began to be applied by ecologists in the 1970s, 
GxE challenges in plant breeding during the 1990s, and to find patterns in ‘omics’ data during the 
2000s. The application and interpretation of the methods in GxE continue to be an active area of 
research and well beyond the scope of an introduction to GxE. 

Cluster Analyses 

Herein we introduce an application of multi-variate techniques to find patterns in GxE 
interactions using Cluster Analyses (CA). The purpose of applying CA is to either: 1. organize the 
environments into homogeneous groups of environments so that there are no GxE interactions 
within environments and to emphasize (maximize) the differences between homogeneous groups 
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of environments or 2. organize the genotypes into groups with no GxE within the groups and 
maximize our ability to identify genotypes that have different responses to environments. 

Cluster analyses require a metric that quantifies dissimilarities among all possible pairs of units 
that we wish to cluster. There are many possible distance metrics that could be used. The most 
commonly used metric for CA of environments, based on GxE, is the Euclidean distance which is 
based on the Pythagoras’ theorem (Fig. 8). 

Fig. 8 Pythagoras’ theorem extended into three-dimensional space. 

Euclidean Distance 

For a trait such as yield, it is advisable to first standardize the values so that all of the yield values 
are on the same scale: Calculate the average and standard deviation for each location, subtract 
the average value from the genotypic value, and divide by the standard deviation for each of the 
genotypes by location. Next, calculate the Euclidean Distance of the standardized yield values 
between all possible pairs of environments. 

CA also requires that we choose a grouping algorithm. There are dozens of clustering algorithms, 
and none should be considered ‘best’ because there are no objective criteria that can be applied to 
all data sets. For purposes of interpretation using yield data with evidence of GxE, I prefer to use 
an agglomerative hierarchical clustering technique such as Ward’s (also known as incremental 
sums of squares) or the Unweighted Pair Group Method with Arithmetic mean (UPGMA, also 
known as average linkage clustering). Cooper and DeLacy (1994) prefer Ward’s, but for the novice, 
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it is usually good to try several grouping algorithms for purposes of comparison based on the 
goals of the breeding project. 

Variation Flux 

One of the fundamental questions that a breeding project needs to decide is whether to develop 
broadly adapted cultivars or specific cultivars for specific environments. Often this is determined 
by production and marketing considerations, but there is also an issue of identifying the types 
of environments that the crop will encounter within a marketing region. In order to assess the 
types of environments, the breeder needs to sample the total population of macro-environments 
using a sample of genotypes. There will clearly need to be trade-offs between these two sampling 
objectives. Decisions on the trade-offs could actually bias the results that one obtains 
because genotypic variances can be confounded with GxE variances and vice-versa. 

To illustrate, consider Fig. 9, where A represents a population of macro-environments and S is a 
subset of macro-environments. 

Let A serve as our reference population of environments. 

It can be shown (with a little algebra) that 

 

Fig. 9 Illustration of targeted sets of environments. 

A consequence is that if the subset population of environments, S, is made more homogeneous 
(smaller subsets of the total), then genotypic variance will increase because GS interaction 
variance will decrease. Alternatively, expansion of the targeted subset S of environments will 
result in a more heterogenous subset which will, in general, increase GS interaction variance at 
the expense of genetic variance. The challenge is to subdivide an original set of environments 

CHAPTER 10: G X E  |  145



so that subdivisions are clearly delineated and substantially more homogeneous. If the market 
analysis then reveals that multiple sub-environments should be served, it will require an increase 
in the breeding effort since one breeding program needs to be replaced by multiple breeding 
projects. 

Partition of GxE Variances 

GxE variances can be partitioned into two components: 

• due to heterogeneity of genotype variance among environments, and 
• due to lack of correlation of genetic performance among environments. 

Muir et al (1992), provided the means for calculating these two components. 

Muir’s Partition Method 

Given a model for the phenotype (Equation 5): 

 Model for calculating components of phenotype. 

where: 
 = phenotype, 

 = overall mean, 
 = genotype effect, 
 = environment effect, 

 = genotype by environment interaction effect, 
 = residual (error). 

Then SS(GE) is determined as (Equation 6): 
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 Model for calculating sum of squares GxE, SS(GE). 

where: 
 = mean of ij’s for all plots, 

 = mean of i’s for all jk’s, 

 = mean of j’s for all ik’s, 

 = grand mean, 

 = variance of i, 

 = variance of i’, 

 = variance of ii’, 
 = all genotypes. 

GE Interaction Equation 

The GE interaction can then be expressed as: 

These results then allow the GE interaction sums of squares to be partitioned into a term due 
to heterogeneous variance, SS(HV)ii’, and that due to imperfect positive correlation of the pair, 
SS(IC)ii’ (Equation 7). 

 Model for calculating sum of squares GxE, SS(GE). 

where: 
 = variance of i, 
 = variance of i’, 
 = correlation between i and i’, 

 = all genotypes. 

Interaction Components 

While the first component can be derived from ANOVA results of single environments using the 
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genotypic variance in each environment and their average, the second component can then be 
calculated using the estimated variance component (EMS) for G x E over all environments and 
genetic variance component over all environments. 

Example Data Sets 1 and 2 

To visualize the relative influence of heterogeneity of genotypic responses and lack of 
correlations among genotypes, consider the following example data sets. 

Fig. 10 GxE due to heterogeneity of environments (data set 1) and lack of 
correlation among lines (data set 2). 

In the first two examples, data sets, G x E is fully explained by one of its two components. In the 
first case, all G x E is due to the heterogeneity of genotypic variance among environments. In the 
second case, G x E is completely due to a lack of correlation of genotypic performance among 
environments. 

Example Data Set 3 

A more realistic example can be found in data set 3, where the GxE is due to a mixture of 
both components. It is, however, worthwhile to look at their partial contribution; genotypic 
heterogeneity explains only 18% of GxE interaction, and lack of correlation (consistent ranking) 
explains 82%. 
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Fig. 11 GxE due to both heterogeneity of environments and lack of correlation 
among lines. 

In the early stages of a breeding project, thousands of genotypes might be evaluated in two or 
three environments, or a few hundred genotypes might be evaluated in dozens of environments. 
In such situations, the simple graphical representations (Figs. 2-6) and partitioning of GxE 
variances (Equations 1-5) become very difficult to interpret. 

Alternative Analyses 

There are alternative analyses and visualization techniques that are used to interpret data from 
large numbers of genotypes grown in large numbers of environments. For example, 
pattern analyses employ measures for similarity or dissimilarity to group environments and lines 
for interpretable graphical representations of either genotypic or environmental performance. 
Consider the following as illustrated examples based on the data represented in Fig. 11. 

Fig. 12 Grouping of environments based on similar genotypic responses. 

In Fig. 12, we have clustered Environments A and C because the genotypes respond to these 
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environments almost identically and very differently from the manner in which they respond to 
environment B. 

Grouping Similar Responses 

In Fig. 12, we also recognize that Genotypes (lines) 2 and 4 respond to the environments in a 
similar manner, so we cluster these together and represent the response patterns of genotypes as 
3 distinct patterns. 

Fig. 13 Grouping of lines with similar responses in 3 environments. 

Grouping of Lines and Environments 

In Figures 12 and 13, either lines or environments are grouped for similar performance. In Fig. 
14, both groupings are shown in the same graph. Simple means of groups were taken to give an 
example for simplification of G x E interactions. 

Fig. 14 Grouping of lines and environments. 

For more complex data sets, measures for similarity and dissimilarity of the performance of 
genotypes can be used to summarize differences in genetic performance of the genotypes in 
environments j and j’. We can denote such difference measures as Dg(jj-). We can also consider a 
measure of a difference, designated as De(ii’-), between environments j and jm, the way in which 
they discriminate between the genetic performance of genotypes. DeLacy and Cooper (1990) and 
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DeLacy et al. (1990a) discussed alternative forms of De(jj-), which have been used for pattern 
analysis of relationships among environments in METs (Cooper and Delacey 1994). 

Flux between Genotypic Variance and GE Interaction 
Variance 

One of the fundamental questions that a breeding project needs to decide is whether to develop 
broadly adapted cultivars or specific cultivars for specific environments. Often this is determined 
by production and marketing considerations, but there is also an issue of identifying the types of 
environments that the crop will encounter within a marketing region. In order to assess the types 
of environments, the breeder needs to sample the total population of macro-environments using 
a broad sample of genotypes. There will clearly need to be trade-offs between these two sampling 
objectives. Decisions on the trade-offs could actually bias the results that one obtains because 
genotypic variances can be confounded with GxE variances and vice-versa. 

To illustrate, consider Fig. 9 above, where A represents a population of macro-environments and 
S is a subset of macro-environments. 

Let A serve as our reference population of environments. 

It can be shown (with a little algebra) that . 

A consequence is that if the subset population of environments, S, is made more homogeneous (a 
smaller subset of the total), then genotypic variance will increase because GS interaction variance 
will decrease. Alternatively, expansion of the targeted subset S of environments will result in 
a more heterogeneous subset which will, in general, increase GS interaction variance at the 
expense of genetic variance. The challenge is to subdivide an original set of environments so that 
subdivisions are clearly delineated and substantially more homogeneous. If the market analysis 
then reveals that multiple sub-environments should be served, it will require an increase in the 
breeding effort since one breeding program needs to be replaced by multiple breeding projects. 

Impact of Multiple Environments 

From an introductory course in statistics, we were taught that the phenotypic variance on an 
entry means basis can be obtained directly from Ordinary Least Squares (OLS) ANOVA by 
equating the estimated Mean Squares (MS) with Expected Mean Squares (EMS). This is also 
known as the Method of Moments (MM see Review Module on Statistical Inference). Thus, an 
estimate of phenotypic variance, , on an entry mean basis is equal to 
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 Formula for estimating phenotypic variance on entry mean basis. 

where: 
 = mean square value of genotype (g) in the ANOVA table, 

 = genotypic variance, 

 = genotype by environment interaction variance, 

 = error variance of the error term, , 
 = number of replications. 

The ability to replicate genotypes and grow them within plots that can be replicated enables the 
plant breeder to “adjust” their precision around their estimates. 

Variance Component Estimation Example 

Let us consider a typical plant breeding field trial in which location and year combinations are 
considered unique environments. (Table 1) Let there be e combinations of years and locations. 
Also, assume the genotypes, g, are grown at the same locations each year. 

Table 1 Expected means squares for estimating variance components. 

Source d.f. Mean 
Square EMS 

Environments (E) n/a n/a 

Reps within E (R)  n/a n/a 

Genotypes (G)  M1 

G x E M2  

Residual M5 

Estimators 

Employing the MM approach, we can obtain estimates of the variance components and, thus, an 
estimate of the Covariance of the genotypic units (Table 2). 
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Table 2 Estimating variances. 

Function Variance Estimated 

Application Notes 

Application of the MM is appropriate only if the data are from a balanced experiment, i.e., the 
number of genotypic units is the same across reps and environments. In the review chapter, we 
employed lsmeans to obtain adjusted estimates of entry means in the case of unequal replication 
per environment. However, we did not learn how to obtain estimates of the variance components 
for unbalanced data sets. 

If there are only a few missing values (say < 5%) from some replicates, then the impact on the 
estimates of variance components will not be very great. However, we often design experiments 
to take advantage of seed supplies which may vary greatly among our genotypic units. In such 
cases, the coefficients of the variance components are not equal to the products of the numbers 
of reps and environments represented in the EMS. Addressing this issue is fairly straightforward 
(Milliken and Johnson, 1992). A more difficult problem is that the estimates of the variance 
components themselves are no longer the “best” estimates. The solution, as described by Holland 
et al (2003) is to obtain Restricted Maximum Likelihood (REML) estimates in a Mixed Model 
Procedure (MMP). 
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Chapter 11: Multiple Trait Selection 
William Beavis; Kendall Lamkey; and Anthony Assibi Mahama 

Most cultivar improvement programs involve selection for multiple traits. Depending on the 
program or project goals, one of three types of multiple-trait selection can be employed. A brief 
description of these types follows. 

• Multistage selection: Selection for different traits at different stages during cultivar 
development. 

• Tandem selection: Selection for one trait until that trait is improved, then for a second, 
etc., until finally each has been improved to the desired level. 

• Independent culling levels: A certain level of merit is established for each trait, and all 
individuals below that level are discarded regardless of values for other traits. 

• Index selection: Select for all traits simultaneously by using some index of net merit. 

Learning Objectives 

• Explain the role of selection for multiple traits on genetic gain. 
• Learn methods for selecting multiple traits. 
• Learn how to evaluate the efficiency and effectiveness of selection on multiple traits. 

Index Selection 

An index is the best linear prediction of an individual’s or line’s breeding value and takes the 
form of the multiple regression of breeding value on all sources of information. 

The objective of an index is to find the linear combination of phenotypic values that maximizes 
the expected gain or, equivalently, that maximizes the correlation between the index value and 
true worth (breeding value). 

Index Selection Theory 

Define phenotype as affected by components in Equation 1. 
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 Linear model for sources of variability in phenotype. 

where: 
 = the observed value of the attribute  for an individual or line, 
 = the average of phenotypic values over a population of environments, 
 = non-genotypic contributions from environments. 

Note: Genotype x environment interactions are permitted, assuming genotypes and 
environments are associated entirely at random; such interactions are incorporated into Ei 
(Equation 1). If GxE are not random, then see Cooper and DeLacy (1994). 

Assume Gi is composed entirely of additive effects of genes (breeding values). Define the 
genotypic economic value, H, of an individual as written in Equation 2: 

 Linear model for sources of variability in phenotype. 

where: 
 = known relative economic values. 

Assume the quantities Pi and H are such that the regression of Pi on H is linear. Selection will 
then be based on the linear function, I (Equation 3). 

 Linear model for index selection. 

where: 
 = regression coefficient, 

 are as defined previously. 

Assumptions 

Assume an equal amount of information on all individuals to be evaluated and selected. Also, 
assume that the distributions of Pi, Gi, and Ei are unknown but that the mean and covariances 
are known. 

Then, 
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Mean and Covariance of H and I 

With these assumptions, we can derive the mean and covariance of H and I as in the set of 
equations written in Equation 4. 

 Formulae for estimating mean, variance, and covariance of H, I, and Gi. 

where: 
terms are as defined previously. 

The objective of a selection index is to use some linear combination of trait values (I) to predict 
true genetic worth (H). 

This can be accomplished by: 

• maximizing expected genetic gain. 
• maximizing the correlation of the sample index (I) with true worth (H). 
• maximizing the probability of correct selection. 
• minimizing the E(I-H)2. 
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Williams (1962) showed that maximizing the correlation between I and H also maximizes the 
expected genetic gain and the probability of correct selection. 

Derivation of the Optimum Index 

Maximizing correlation of I with H (Equation 5): 

 Equation for estimating the correlation between I and H. 

where: 
terms are as defined in equation 4. 

It can be shown that maximizing rIH is equivalent to maximizing log(rm   ) (Equation 6). 

 Equation for maximizing correlation of I with H. 

where: 
terms are as defined previously. 

Using least squares and differentiating with respect to bj, we get Equation 7: 

 Calculating the correlation of I with H using least squares techniques. 

where: 
all terms are as defined previously. 

Rewriting the Normal Equations 

These equations are called the normal equations (unrelated to normal distribution) and constitute 
n equations in n unknowns. 
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They can be rewritten as in Equation 8: 

 Calculating the regression coefficient and observed value. 

where: 
all terms are as defined previously. 

Because we are only interested in relative values of bi, the constant term can be dropped, resulting 
in Equation 9: 

 Dropping the constant values before calculating the regression coefficient and 
observed value. 

where: 
all terms are as defined previously. 

Further Calculations 

Considering 2 traits (n=2), Equation 9 is written as: 

Solving the above equations, we get Equation 10: 

; 

. 

 Calculating the regression coefficient, 

where: 
all terms are as defined previously. 
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Minimizing E(I-H)2 

The same equations can be derived  to get Equation 9 by minimizing E(I-H)2 as written below: 

because, 

Applying least squares: 

Dividing through by 2 and rearranging, we get the normal equations: 

which are identical to the equations presented previously. 

Expected Genetic Gains 

To derive the expected genetic gains, we need to make assumptions about the distributions of 
, , and . 

Assume: 

1. , , and  are distributed normally with the mean and covariance structure given 
earlier. 

2. Truncation selection on . 

Then, the expected genetic gain is estimated with Equation 11: 
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 Calculating the genetic gain of change in genetic worth, 

where: 
 = the genetic gain, that is, the change in genetic worth, 
 = the regression coefficient of H on I, which gives the mean value of H or any 

value of I. 

This is the standard way to calculate predicted gains from univariate selection. See, for example, 
Empig et al. (1972). 

Truncation Selection 

The situation with regard to truncation selection is based on the following where, 
Ī is the mean value of the index in the population; c is the truncation point; z is the height of 
ordinate of the standard normal curve at the truncation point c; 
P is the proportion of the population selected, and Īs is the mean of the selected individuals. 

Then, the value of the frequency of the index is estimated with Equation 12: 

 Calculating the genetic gain of change in genetic worth, 

where: 
 = the frequency of individuals with index value I 

 are as defined previously. 

Selection Relationships 

The proportion saved is related to the truncation point by , and the mean 

value of the selected group is . 

The selection differential (D) is given by Equation 13: 
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 Formula for calculating the selection differential, D, 

where: 
 are as defined previously. 

Standardized Regression Coefficient 

Let, 

; 

then, the standardized regression coefficient is derived as in Equation 14: 

; 

; 

 Calculating the standardized regression coefficient, 

where: 
 = the height of the ordinate at the truncation point. 

Typically, this is represented as , where, k is the standardized regression 

coefficient. 

Expected Gain 

Expected gain can then be represented as in Equation 15: 

, 
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 Formula for expected genetic gain, 

where: 

, 

From the normal equations derived earlier, we have 

Substituting these terms, 

, we get 

expected genetic as written in Equation 16: 

, 

 Alternative formula for expected genetic gain, 

where: 
 are as defined previously. 

Predicted Gain 

The predicted gain is more useful when written in terms of the correlation between H and I 
designated as rHI (Equation 17): 

, 

 Formula for predicted genetic gain, 

where: 

, as defined previously. 
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In the selection index literature, rHI is called the accuracy of selection because it is a measure of 
how well the index, I, measures the true worth, H. 

Alternative selection indices, I, can be compared using rHI as long as the selection goal, H, 
remains the same for each of the indices. 

Expected Genetic Gains for Each Trait 

Let ΔGi be the expected genetic gain in trait i when selection is on I. From representations in 
previous equations as below, the expected genetic gains can be obtained as written in Equation 
18. 

, 

 Formula for expected genetic gains for each trait, 

where: 

, 

, 

. 

This index requires that you know the true values of the population parameters. However, 
estimates of the population parameters are often substituted for the true values, and the resulting 
index is called the estimated index or the Smith-Hazel index. 

Matrix Representation of Selection Indices 

With this notation, the normal equations can be written as . 

Some Results 

where G_i is the ith row of G.  The genetic gain can be written as in Equation 19: 
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, 

 Matrix notation for expected genetic gains, 

where: 

, 

other terms are as defined previously. 

Construction of a Selection Index 

Optimum Index 

The normal equations can be written for an optimum index as , 

where P, G, and a are known without error, and the index is as in Equation 20: 

, 

 Formula for optimum index, 

where: 
 = trait x, 
 = trait y. 

Smith-Hazel Index 

This index is the same as the optimum index; only in this case (Equation 21), we use estimates of 
P, G, and a, designated as , , and , respectively. 

, 

 Formula for Smith-Hazel index, 
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where: 
 are as defined previously. 

Base Index 

The Base Index was apparently first suggested by Brim et al. (1959) and named the Base Index 
by Williams (1962). The base index is constructed simply by allowing b = a  and written as in 
Equation 22, with all terms defined earlier. 

, 

 Formula for Smith-Hazel index, 

Some results for this index include: 

The foremost attribute of this index is its simplicity of construction and interpretation. Also, this 
index does not require the estimation of genetic parameters. 

Multiplicative Index 

The multiplicative index was first proposed by Elston (1963). This index is also sometimes called 
the weight-free index because it does not require the specification of index weights or economic 
values. 

The general form of this index is as in Equation 23: 

, 

 Formula for multiplicative index, 

where: 
 = the minimum value of trait X1 set by the breeder. 

In addition to being weight-free, this index also does not require the estimation of genetic or 
phenotypic parameters. Because this is a curvilinear index, theory is not available to predict 
gains. Baker (1974) found that this index can be approximated by using a linear index, where 
the weights are the reciprocals of the phenotypic standard deviations of the traits in the index. 
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This essentially amounts to an index with equal weighting per phenotypic standard deviation. 
Approximate, predicted gains can then be obtained for this index using the Smith-Hazel index 
theory. 

Desired Gain Index 

The desired gain index was suggested by Pesek and Baker (1969). This index allows the breeder to 
specify a vector of desired gains, , and then substitute this into the predicted gain equation and 

solve for the index weights. The solution for  is as in Equation 24: 

, 

 Formula for desired gain index, 

where: 
 = the vector of desired gains, 

 is as defined previously. 

This index was proposed to eliminate the need to specify economic weights. However, in practice, 
there are some difficulties with the index in specifying the vector of desired gains. 

This index will result in maximum gains in each trait according to the relative importance 
assigned by the breeder in specifying the desired gains. 

Predicted gains can be obtained by substituting the vector of index weights into the conventional 
Smith-Hazel predicted gain equations. 

Restricted Selection Index 

Restricted selection indices were first derived by Kempthorne and Nordskog (1959). Since then, 
various restricted indices have been derived by Cunningham et al. (1970) and James (1968). See 
Lin (1978) for a complete list. Basically, restricted selection indices involve holding the genetic 
gains in one or more traits to a constant or zero while changing the means of other traits in 
the desired direction. The basic method is to impose the restriction on the index equations that 

. 

The simplest procedure to accomplish this was given perhaps by Cunningham et al. (1970). Their 
method involved solving the following set of equations in Equation 25: 

CHAPTER 11: MULTIPLE TRAIT SELECTION  |  167



, 

 Formula for restricted selection index, 

where: 

 = , 

 = , 

 are as defined previously. 

b is the vector of index weights to use in the index equation as , as before. The dummy 

variable is not used in the index equation. 

This method has the interesting consequence that the value obtained for the dummy variable 
is the negative of the economic weight needed to produce zero change in that trait in an 
unrestricted selection index. 

Rank Summation Index 

The rank summation index was first suggested by Mulamba and Mock (1978). Basically, this index 
involves obtaining the ranks of each of the traits to be included in the index and then calculating 
the index by summing up the trait ranks, represented in Equation 26. 

 Formula for the rank summation index, 

where: 
 are as defined previously. 

The primary advantages of this index are that genetic parameters need not be calculated, it 
transforms the data so that the variances for each trait are identical, and it does not require the 
specification of economic weights, although they can be used. 

As with the multiplicative index, predicted gains cannot be calculated for this index. However, 
Crosbie et al. (1980) found that the same prediction equation used for the multiplicative index 
provides a reasonably good approximation of the predicted gains for the rank summation index. 
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Selection Index Efficiency 

Methods to Compare Selection Index Efficiency 

Cunningham (1969) provided a method for comparing the relative efficiencies of selection 
indices. He was primarily interested in deleting traits from the index so that their relative 
contribution to the gain in the true worth (H) could be determined. Dropping traits from the 
index means that fewer genetic parameters need to be estimated, providing considerable cost 
savings. 

Define the index containing all the traits of interest as the original index and define the index 
with one trait dropped out as the ith reduced index. Then the efficiency of the ith reduced index 
relative to that of the original index is the ratio of their standard deviations. Cunningham showed 
this to be as in Equation 27: 

 Formula for selection index efficiency, 

where: 
 = the ith weighting factor in the original index, 

 = the corresponding diagonal element in the inverse of P. 

A more usual procedure is to compare the gain for the ith trait when selection is on I, relative to 
the single trait selection for the ith trait. 

Effect of Correlations on Index Weights 

To determine the effects of correlation on index weights, we need to derive the index equations 
Pb = Ga in terms of genetic and phenotypic correlation coefficients (Equations 28, 29, 30) 
following the series of derivations as follows. Let, 
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Derivation 

 Formula for phenotypic and genotypic correlations, 

where: 
 are as defined previously. 

For 2 traits (n=2), 

 Formula for estimated correlation between two traits, 

where: 
 are as defined previously. 

When correlations are zero: Pr12 = Gr12 = 0, 
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 Formula for estimated correlation between two traits when phenotypic and 
genetic correlations are zero, 

where: 
 are as defined previously. 

When | r | < 0.30, the use of the above index is nearly as efficient as using the Smith-Hazel index. 
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Chapter 12: Multi Environment Trials: Linear 
Mixed Models 

William Beavis and Anthony Assibi Mahama 

The general linear model (Equation 1) can be applied to replicated trial data for basic prediction 
purposes. It is, however, not adequate in all experimental situations, especially where trials are 
conducted in more than one environment. This chapter explores the role of mixed linear models, 
BLUEs (Best Linear Unbiased Estimates), and BLUPs (Best Linear Unbiased Predictors) in the 
analysis of multiple environment trial data to characterize and select among entries. 

 General linear model for basic prediction of replicated trials. 

where: 
 = the phenotypic response, 

 = population (or overall) mean, 
 = genotypic units, 
 = number of replicates of the genotypic units, 
 = residual source of variability. 

Learning Objectives 

• Conceptual basis of mixed linear models 
• Review matrix algebra 
• The meaning of BLUE and BLUP 

Henderson’s Concept 

C.R. Henderson recognized the challenge of prediction using models such as Equation 1 and 
addressed it using the concept of shrinkage estimators for the genotypic units in the model. Note 
that the fitted regression line provides predictions that are ‘shrunken’ to the line rather than 
scattered around the line. Henderson’s idea, first published in 1963, was framed in the context of 
the matrix form of Equation 2, which can be explained using scalar algebra. 

First, let us obtain phenotypic averages for each genotypic unit. Next minimize the difference 
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of N1, where E represents the expectation, that is, the average for the genotypic unit, m is the 
population mean and gi is the genotypic value from the scalar version of model Equation 2. In this 
case, we need to find a value that will ensure that the sum of the squared differences is minimal. 
As with Equation 2, a little knowledge of how to obtain partial derivatives provides the answer: 

 Formula for calculating intra-class correlation. 

where: 
 = intra-class correlation coefficient or broad sense heritability, 
 = genotypic variance, 

 = residual ( or error) variance, 
 = number of replications. 

This is known as the intra-class correlation coefficient. It is also known as the broad sense 
heritability, but for now we will refer to it as a shrinkage factor. When wi is multiplied by 
(Yi – m) it will provide the Best Linear Unbiased Predictor of gi. Notice that the predictions of 
genotypic values are scaled towards the mean BV, which by definition is zero. 

Example Prediction 1 

If the overall mean is the only fixed effect (one environment), all lines are unrelated to each other, 
and the data are balanced, then the predicted genotypic value is obtaining using Equation 3: 

 Formula for calculating predicted genotypic value. 

where: 
 = predicted genotypic value of genotypej, 

 = the Shrinkage factor, 
 = the phenotype of genotype j, 

 = the predicted phenotype. 

If  is equal to zero,  would be zero. 
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If  is equal to one,  equals the phenotypic values. 

Let us demonstrate this with a simple data set in which four unrelated lines (A, B, C, D) were 
evaluated for yield (t/ha) in hybrid combination with a single tester (Z) in single rep tests at N 
environments (Table 1). For this simple example we are only interested in the impact of number 
of environments (replicates) on wi and its subsequent impact on the predicted value for each gi. 
Also, assume that the residual variance, σe

2= 40. 

Summary Data 

Table 1 Summary data of four inbreds evaluated in hybrid combination with one tester (Z) in single rep 
tests at 10 environments. 

Hybrid 

AxZ 7 10 -3 10 -2.5 2 -1.5 

BxZ 9 10 -1 10 -0.83 2 -.05 

CxZ 11 10 1 10 0.83 2 0.5 

DxZ 13 10 3 10 2.5 2 1.5 

Prove for yourself that the estimated σe
2 = 20. 

Some things to notice from the table: 

• The data are from balanced trials, i.e., all genotypic units are evaluated in the same number 
of environments (either 2 or 10). 

• With a large N, the observed differences will be equal to the predicted values. 
• For balanced trials, shrinkage does not change the relative ranking. 

In essence the shrinkage predictor provides us with a value that not only includes the difference 
relative to the mean, but also weights it by our confidence in the magnitudes of the differences 
from the overall mean. 

We need to consider how to obtain predictions for genotypic units in the more likely situations 
where not all genotypic units (lines, cultivars, hybrids) will be evaluated equally in all 
environments. Indeed, we now find it possible with marker technologies to predict the values of 
the genotypes before they have been grown. 
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Best Linear Unbiased Prediction 

Henderson’s shrinkage predictor can now be considered in the context of the matrix form of the 
mixed model equation (Equation 4): 

 Mixed model equation for predicting phenotype. 

where: 
 = Vector of observations (phenotypes), 
 = Design matrix for fixed effects, 

 = Vector of unknown fixed effects (to be estimated), 
 = Design matrix of random effects, 
 = a vector of random effects (genotypic values to be estimated), 
 = a vector of residual errors (random effects to be estimated). 

The random effects are assumed to be distributed as 
. 

Just as estimates for  in the matrix form of Equation 4 can be found using the normal equations, 
the normal equations for Equation 4 can be used to find least squares estimates for the 
parameters in Equation 5. 

 Normal equations in matrix notation. 

where: 
 = the fixed effects parameters, 

 = the random effects for the parameters, 
 = incidence matrix, 

 = a vector of observed phenotype (e.g., yield), 
 = the additive relationship matrix, 
 = the diagonal matrix, 
 = incidence matrix, 

 = the additive variance, 
 = the residual variance. 
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BLUEs and BLUPs 

The values for  represent the Best Linear Unbiased Estimators (BLUE) of the fixed effects, while 

the values for  represent the Best Linear Unbiased Predictors (BLUP) of 

the random effects. It is important to remember that BLUE’s and BLUP’s are not methods; they 
are statistical properties of methods (there are many) that are capable of producing such values. 
These statistical properties include: 

• Best: the sampling variance of what is being estimated or predicted is minimized. 
• Linear: estimates or predictions are linear functions of the observations. 
• Unbiased: in BLUE indicates that the expected values of the estimates are equal to their 

true values. In BLUP, indicates that the sum of the predictions have an expectation of zero. 
• Estimators and Predictors: refer to algorithms that generate the estimated or predicted 

values. 

For BLUE’s the effects are considered fixed. Examples include the overall mean, effects of 
different soil types, fertilizer treatments, etc. From a practical perspective, fixed effects do not 
have a covariance structure. Due to the practical perspective, we often consider environments as 
fixed effects. 

Effects of BLUPs 

The effects of BLUPs are considered random and it is possible to define covariance structures 
associated with these effects. Examples include breeding values, dominance effects, tester effects, 
etc. The challenge for application of methods that provide BLUPs is that Equation 3 assumes 
covariances and variances are known. The truth is that the variances of genetic and non-genetic 
random effects are not known. Rather in practice we estimate these values. Thus, all 
implementations of methods that provide BLUPs from mixed linear model equations provide 
only approximations of the unknown vector values. 

Nonetheless, BLUP values are useful in practical plant breeding trials where designs are 
unbalanced. Indeed, a method that produces a BLUP value enables the estimation of genetic 
variances without having to resort to mating designs to obtain estimates of heritability. A typical 
trial will have different numbers of genotypic units from different families evaluated in different 
sets of environments, some replicated some not. BLUPs utilize covariance structures (covariances 
among genotypic units grown in the same sets of environments and covariances among relatives) 
to maximize information on the traits of interest. Thus, the true purpose of a plant breeding 
trial (to compare genotypes for purposes of selection), is enabled with the best possible values 
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for comparison because BLUPs maximize the correlation between the true genotypic values and 
predicted values. 

Example 

While Equation 5 initially appears to be daunting, with the little bit of matrix algebra, introduced 
above, you have the skill to do these analyses using EXCEL. For example, consider the simple 
data set in Table 2 (adapted from Chapter 11 of Bernardo, 2010). 

Note: This is an example of a self-pollinating crop (barley) and the number of environments does 
not factor into solving of the equation. 

Table 2 Sample data from Chapter 11 of Bernardo, 
2010. 

Environments No. of Env Line Yield 

Low yield 18 1 4.45 

Low yield 18 2 4.61 

Low yield 18 4 5.27 

High yield 9 2 5.00 

High yield 9 3 5.82 

High yield 9 4 5.79 

We desire to translate this into the following model in Equation 6. 

 General linear model for basic prediction of replicated trials. 

where: 
 = the phenotypic response, 

 = population (or overall) mean, 
 = genotypic effect, 
 = environmental effect, 

 = genotypic by environment interaction effect, 
 = residual source of variability. 

In matrix notation, the data are represented in the model, (Equation 4, ) as 
in Equation 7: 
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 Matrix notation of Equation 4 and Table 2 data. 

Linear Mixed Model Solution 

The LMM solution is represented in Equation 8: 

 Linear mixed model solution for Equation 7. 

where: 

, 

. 

Thus, R represents a matrix that weights the calculations by the number of observations that 
contribute to the estimated mean values of each cultivar in each type of environment. 
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Estimated Residual Variance 

Assuming that the lines are unrelated to each other, 

 is the ratio of the estimated residual variance (sometimes 

incorrectly referred to as the estimate of the experimental error) to the estimated additive 
genetic variance. For purposes of illustration let us consider this estimated ratio to be 5, i.e., the 
estimated additive genetic variance is 20% as large as the residual variability. 

Calculations for the example have been implemented in an EXCEL spreadsheet: BLUEs and 
BLUPs of 4 barley varieties [XLSX]. 

As an exercise to conduct on your own, consider implementing the LMM.7 for the example on 
estimation of means using lsmeans discussed in the review module: 
Review of EDA and Estimation [DOC]: 

• Download R-code example eda aov lsmeans [TXT] 
• Download R-code example for mixed models [TXT] 
• Download R-code example Regression [TXT] 
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Chapter 13: Simulation Modeling 
William Beavis and Anthony Assibi Mahama 

Quantitative genetic models are used to represent, describe, and quantify the genetic 
contributions to natural phenomena. These models can be arbitrarily simple, e.g., additive linear 
models, or complex, e.g., non-additive, non-linear models. R.A. Fisher and Sewell Wright had 
a decades-long debate about which type of model should be considered in the study of natural 
and artificial selection. Fisher and his disciples argued that the more complex models were not 
needed. Sewell Wright and his students argued that biology was inherently complex and needed 
non-linear non-additive models to accurately understand adaptation and evolution. Of course, 
both were correct, and both were wrong. As George Box reminds us, all models are wrong; some 
are useful. The choice of an appropriate model depends upon the purpose of the research. 

Prior to this chapter, we investigated the development of theoretical quantitative genetic models 
for the purposes of conducting and interpreting analyses of plant breeding experiments. As 
noted, without the theoretical models, there would be no genetic understanding of the results. 
Theory provides predictions, and predictions are the basis for generating testable hypotheses. 
In this chapter, we introduce a far more practical justification for theoretical models: With a 
theoretical model, it is possible to simulate many different data analysis techniques and breeding 
strategies prior to conducting expensive experiments. In other words, natural and artificial 
systems can be modeled in silico for purposes of predicting unknown outcomes. Many in silico 
experiments can be compared, and the most promising can be used to compare methods or 
processes. If comparisons are based on objective criteria, such as accuracy, power, precision, 
efficacy, and efficiency, and if the model used for data analyses is the same as the model used for 
simulating data sets, we can make rational decisions about which methods to implement in plant 
breeding experiments. 

Learning Objectives 

• Recognize limitations of experimental research 
• Translate QG models to simulation models 
• Translate simulation models to EXCEL software functions 
• Build confidence in the use of simulation models 
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History of Simulations 

Geneticists first used computers to implement simulation models to evaluate limits to artificial 
selection (Hill and Robertson, 1968; Bulmer, 1976) in closed breeding populations. By 1988, 
Oscar Kempthorne, one of R.A. Fisher’s disciples, pointed out that the classical experimental 
and algebraic approaches were limited to unrealistic assumptions in breeding and evolutionary 
systems. Since 1988, plant and animal geneticists and breeders have used simulation models to 
evaluate the limits to emerging statistical methods (Beavis, 1994) and to choose among selection 
methods because experimental evaluation of breeding methods is time and resource-limited 
(Podlich and Cooper, 1998). To date, there have been over 15,000 publications in which the terms 
simulation and breeding occur in the title. Currently, there are numerous simulation software 
packages that have been developed and implemented for public and private research enterprises. 
Some are quite simple, while others are very flexible and complex. Generally, as the flexibility 
of the package increases, the learning curve associated with the complexity of the package also 
increases. Thus, some of these simulation packages require entire courses and years to master. 
While it is beyond the scope of this chapter to either advocate or teach any particular simulation 
package, we will learn how to implement the core quantitative and population genetic models 
that are part of every useful simulation package. 

Core Elements 

The core elements of simulation modeling include the genetic architecture of the trait(s), the 
structure of segregating generations derived from breeding populations, and the organization of 
the segregating genomes. 

Before we decide on the genetic architecture of the trait, we need to know the structure of the 
segregating generation derived from the breeding population. In diploid organisms, there are 
usually three genotypes at a SNP locus: {aa, ac, cc} or {tt, tg, gg}. Let us consider a locus with the 
second triplet, {tt, tg, gg}. If we decide to simulate a random mated population, then each of the 
three genotypes {tt, tg, gg} will occur at a frequency of p2, 2pq, and q2. To decide which genotype 
is going to be assigned to an individual, we should obtain a random sample of a number from the 
Uniform[0,1] distribution. If the random number is in the interval [0,p2], then we will assign the 
genotype ‘gg’ to individual i. If the random number is in the interval [p2, p2+2pq], then we will 
assign the genotype ‘tg’ to individual i; otherwise, we will assign the genotype ‘tt’ to individual i. 

Obtaining a random sample from any distribution will depend on the syntax of the software 
system we decide to use for simulating the data. Since most students have experience with 
spreadsheet types of software, we will first learn how to use Excel for simulating SNP genotypes 
at a single locus in a random mating population, where p (frequency of g) = 0.3. The frequency 

CHAPTER 13: SIMULATION MODELING  |  181



of ‘gg’ genotypes at this locus will be 0.09, the frequency of ‘tt’ genotypes will be 0.49, and the 
frequency of heterozygous genotypes will be 0.42. Thus, if we sample a random number from the 
uniform distribution in the interval [0, 0.09], then we will assign the genotype ‘gg’ to individual i; 
in the interval from (0.09, 0.51], we will assign the genotype ‘gt’ to individual i; otherwise, we will 
assign the genotype ‘tt’ to individual i. 

Excel-Based Simulation 

Step 1 

With these parameters, we will use the Excel functions “IF” and “RAND” in the following steps: 

1. Assign a sampleid designator to the first column. 

Step 2 

With these parameters, we will use the Excel functions “IF” and “RAND” in the following steps: 

2. Obtain a random number from the Uniform Distribution for each of the sampleid’s. 
Syntax: type =RAND() in cell B2, then drag across all cells in column B. 
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Step 3 

With these parameters, we will use the Excel functions “IF” and “RAND” in the following steps: 

3. Based on the random number assigned to each sampleid, assign a genotype to the locus. 
Syntax: type =IF(B2<=0.09,”gg”,IF(B2>0.51,”tt”,”gt”)) in cell C1, then drag across all relevant 
cells. Note that values in columns B and C will likely differ from those in the example 
below. 

Step 4 

If we do not want the values generated by the RAND function to change as we add functions 
to the spreadsheet, we should plan to cut and paste a set of the actual values from one of the 
sampling events into new columns: 

Other Population Structures 

There are many other possible breeding population structures; some are the result of designed 
crosses (see Chapter 8 on mating designs), but most population structures emerge from long-term 
breeding programs in which elite homozygous cultivars are crossed to promising homozygous 
lines through opportunistic networks of crosses. Simulating genotypes at segregating loci from 
any mating design or breeding program can be obtained in a manner described in the previous 
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paragraph. We need only decide on the frequencies of the genotypes in the segregating 
populations. For example, in the specific case of an F2 generation derived from a cross of two 
inbred lines, p = q = 0.5, and if a random number obtained from a uniform distribution, U[0,1], 
is greater than ¼ and less than ¾ then the genotype of individual plant i, will be ‘gt’. We could 
be interested in the case of recombinant inbred lines derived in the F5 generation of a cross of 
two inbred lines. In this case, the frequency of homozygotes is now p2+pqF and q2+pqF, and the 
frequency of heterozygous lines is 2pq(1-F), where F = 0.875. Thus, if a random number obtained 
from U[0,1] is less than 0.4687, then RIL. i will be assigned the genotype ‘gg’. It should be obvious 
that it should be possible to generate mixtures of segregating families from multiple independent 
or related crosses and simulate genotypes for any particular locus to all individuals in all families, 
regardless of how the families are derived. 

Genetic Architecture of the Trait 

Next, we need to decide how many loci will influence a trait and whether the alleles at the loci 
will interact. Let us begin with a single-locus additive quantitative trait, designated P. Further, 
consider a trait with an average phenotypic expression of 50 units and phenotypic variability 
in a diploid species that is due to additive genetic variability at a single locus and non-genetic 
variability. Initially, let us plan to let half of the phenotypic variability be due to segregation at 
the locus and half due to non-genetic sources of variability. The first step is to translate this brief 
description into a quantitative genetic model (Equation 1), preferably the same model that will be 
used in the eventual analysis of the phenotypic trait: 

 Quantitative genetic model for phenotypic trait, 

where: 
 = the phenotype, 
 = the genotype effect, 

 = one of three possible genotypes conferred by two alleles, 
 = one of the repeated samples of the ith genotypes, 

 = non-genetic source of variability and is ~ i.id N(0,σε). 

Thus, the variance model of Equation 1 is as written in Equation 2: 

 Variance model for phenotypic trait, 
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where: 
 = the phenotypic variance, 

 = the genotypic variance, 

 = residual or non-genotypic variance. 

Parameter Assignment 

The next step is to assign values to each of the parameters in the model. Mean, µ is assigned the 
value of 50, and values for eij are sampled from a Normal distribution with a mean of zero and a 

standard deviation of σe. We decided that we want to simulate data in which 

(Equation 2 above). 

We can choose any value for σ2
P, but it is often best to choose a value that is ~ consistent with 

estimates from field trials for the crop of interest. In this case, let us say our field trials have 
typically produced estimates of phenotypic variance of ~ 98. Thus, both σ2

G and σ2
ε are ~ 49. 

Thus, we can obtain values for εij by sampling a normal distribution with mean = 0 and standard 
deviation = 7. 

Genotypic Values 

We also need numeric values for each of the genotypes. Recall from Quantitative Genetic Models 
Theory we can assign coded genotypic values to each genotype as follows: 

• Coded genotypic value of one homozygote (gg) = +a; 
• Coded genotypic value of the other homozygote (tt) = -a; 
• Coded genotypic value of heterozygotes (tg or gt) = d. 

Since we are simulating an additive genetic model, the genotypic value of the heterozygotes (d) is 
midway between the two values for the homozygotes, i.e., d = 0. Thus, 

Gi = a for i = “gg”; -a for i = “tt”; and 0 for i = “gt” or “tg”. 

Now we need a numeric value for a. 

Calculations 

Recall that  (Equation 2), and the additive portion of genetic variance is 

represented by Equation 3: 
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 Formula for calculating additive genetic variance. 

where: 
 = the additive genetic variance, 

 = the dominance variance, 

 = the frequency of the two alleles (g or t), 
 = coded genotypic values. 

Since we have decided to simulate d = 0, the genetic variance is all due to additive effects 
((Equation 4): 

 Algebraic formula for calculating genotypic variance. 

where: 
 are as defined previously. 

Thus, 

If we assume that the frequency of ‘t’ (or ‘g’) in the population is , then a reasonable value for 

Excel Application 

Next, let us translate these values for the parameters into Excel functions. 

Syntax for assigning ‘a’: Type =IF(E3=“gg”,11.43, IF(E3=“tt”,-11.43,0))  in Cell 
G3, then drag across all relevant cells. 
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In order to fully understand how to sample from a normal distribution requires knowledge of 
probability density functions, cumulative density functions, and integral calculus that enables the 
translation between the two. These are topics beyond our current scope but worth exploring by 
those who wish to develop their own simulation capabilities. 

Normal Distribution Interval 

For our immediate purpose, the Syntax for obtaining values for εij by sampling a Normal 
distribution with mean = 0 and standard deviation = 7 is the following: 

Type =NORMINV(RAND(),0,7)  in cell H3 and then drag across all relevant cells. 

Simulated Phenotypes 

We now have values for all of the parameters in the model and need merely sum columns F, G, 
and H to obtain the simulated phenotypes (column I) for each of the sampleids. 

Keep in mind that if these were field trial data, we would only be able to obtain data found 
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in columns A and I. It should be immediately apparent that column F could be a mean value 
for a particular replication or environment of the sampleids. Thus, it should be possible to 
simulate data from multiple replicates and multiple environments with different mean values. 
It should also be apparent that the sampling of εij could be derived from environments with 
a different plot-to-plot variability. For example, instead of using 7 in the function 
=NORMINV(RAND(),0,7) , we could designate the standard deviation for some environments 
to be 14 and thus create a type of GxE that we discussed in Chapter 12 on Multi Environment 
Trials. 

Example Calculations 

For the specific case of an F2 generation derived from a cross of two inbred lines, p = q = 0.5, 

Alternatively, we could be interested in the case of recombinant inbred lines derived in the F5 
generation of a cross of two inbred lines. In this case,  the additive portion of genetic variance is 
represented by Equation 5: 

 Formula for calculating additive genetic variance involving inbreeding coefficient. 

where: 
 = the coefficient of inbreeding, 

 are as defined previously. 

Again, let d = 0, p = q = 0.5, but F = \small 0.875 and a reasonable value to simulate for  as: 

Polygenic Trait Simulation 

Let us next simulate a polygenic trait P in which segregation at three loci will contribute additive 
genotypic values that are responsible for 30% of the phenotypic variability. In this case, the 
phenotype is modeled where i, j, G, and ε are as before, and k represents each locus, while n is 
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3. For simplicity, let us assume that segregation at each of the three loci contributes an equal 
amount to the genotypic variability in an F2 population. Let us refer to these loci as quantitative 
trait loci (QTL). Using the quantitative genetic models we have already used, we learn that for 
each of the simulated QTL, a can be obtained using Equation 6: 

 Formula for calculating additive genotypic value involving QTL, 

where: 

are as defined previously. 

If we want the total phenotypic variability to be ~98, as before, and the frequency of each of the 
alleles at all three loci is 0.5 (as in an F2), then σ2

G = σ2
A = 29 and a = 2.56 for each of the loci. We 

would translate this information to the Excel spreadsheet as before, but now the spreadsheet will 
have three columns for genotypes and three columns for genotypic values at each of the loci. 

QTL Simulations 

How would you simulate genotypic effects if you wanted one of the QTLs to contribute 75%, a 
second QTL to contribute 20%, and the third to contribute 5% to the total genotypic variability? 

For hybrid crops, the segregating progeny are often evaluated in testcross combination. For 
example, in maize, it is routine to generate doubled haploids (DHs) from a cross of two elite 
Stiff Stalk homozygous lines. The DH’s are then crossed to an elite non-Stiff-Stalk homozygous 
‘tester’. The resulting sample of Testcrossed DH (TDH) will be evaluated in an initial field trial. 
Let us simulate this situation for TDHs, grown in a field trial in which the CV for yield is ~ 7% 
and the mean is ~ 225 bu/ac. In order to simulate TDH’s we need to recall that the additive genetic 
variance for testcross progeny is represented by Equation 7: 

 Formula for calculating additive genetic variance for testcross progeny, 

where: 
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 = the additive genetic variance for testcross, 

 = the coefficient of inbreeding, 
 = the average effect of testcrossed allele. 

Because the parents of the DH lines are fully homozygous, we can assume F=1. Thus, 

. 
Otherwise, the simulations will be generated as before, except we now have a different mean and 
phenotypic variance. 
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Plant Breeding Basics 
William Beavis and Anthony Assibi Mahama 

The materials in this chapter cover the basics of plant breeding and data management and 
analysis concepts to serve as a refresher for helping the reader prepare to work through the main 
chapters of the book. Some readers may find it necessary to consult some introductory breeding 
and statistics texts for additional preparation. 

Learning Objectives 

Place plant breeding activities within a framework of three categories based on goals: 

• Genetic improvement 
• Cultivar development 
• Product placement 

Fig. 1 Plant breeding research activities at Makerere 
University in Uganda. Photo by Iowa State University. 

Defining Plant Breeding 

Plant Breeding has many definitions. A working definition to consider: 

PLANT BREEDING BASICS  |  191



Plant Breeding is the genetic improvement of crop species. 

This definition implies that a process (breeding) is applied to a crop, resulting in genetic changes 
that are valued because they confer desirable characteristics to the crop (Fig 1). Current breeding 
programs are the result of thousands of years of refinements that have been implemented 
through considerable trial and error. Refinements to the breeding processes are constrained by 
limited resources, technologies, and the reproductive biology of the species. Thus, the challenge 
of designing a plant breeding program might be thought of as the engineering counterpart to 
plant science (Fig. 2). 

 

Fig. 2 Plant breeding research activities at Makerere University in Uganda. Photo 
by Iowa State University. 

Other definitions 

• Art of plant breeding: “… the ability to discern fundamental differences of importance in the 
plant material available and to select and increase the more desirable types…” Hayes and 
Immer (1942) 

• “Plant breeding, broadly defined, is the art and science of improving the genetic pattern of 
plants in relation to their economic use.” Smith (1966). 

• “Plant breeding is the science, art, and business of improving plants for human benefit.” 
Bernardo (2002). 
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Fig. 3 Individual plants of intermediate wheatgrass are tied into bundles to 
be cut and threshed in order to select the plants with the highest yield and 
largest seed. Photo by Dehaan; licensed under CC-BY-SA 3.0 via 
Wikimedia Commons. 

Organization of Plant Breeding Activities 

For the purposes of applying appropriate quantitative genetic models in plant breeding, it is 
important to understand the distinctions among three types of plant breeding projects: genetic 
improvement, cultivar development, and product placement. The distinctions among these three 
types of projects are nuanced aspects of every plant breeding program, yet the distinctions are 
critical for applying the correct models for data analyses used in decision-making. 

Cultivar Development 

The primary goal of a genetic improvement (red arrows) project is to identify lines to cycle into 
the breeding nursery (Fig. 3) for purposes of genetic improvement of the breeding population. 
Identification of lines to select is accomplished through assays of segregating lines (synthetics, 
hybrids) with trait-based markers and small plot field trials in single and Multi-Environment 
field Trials (METs) (Fig. 4). Data analyses will include analyses of binary traits with binomial and 
multinomial models and quantitative traits with mixed linear models, where the segregating lines 
will be modeled as random effects and the environments as fixed effects. 

The primary goal of the cultivar development project (blue filters) is to identify cultivars that 
have the potential to be grown throughout a targeted population of environments. Thus, in a 
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cultivar development project, selected lines from segregating populations will be evaluated for 
quantitative traits in multi-environment trials. Data analyses in the Regional Trials of a cultivar 
development project will also be based on mixed linear models. However, in this case, lines are 
often modeled as fixed effects, while the environments are modeled as random effects. 

Fig. 4 A model of plant breeding activities. 

The goals of a product placement project are again distinct from genetic improvement and 
cultivar development. In a product placement project, agronomic management practices, as well 
as cultivars, are selected for the field trials. These are often organized in hierarchical (split-plot) 
experimental designs. Thus, the parameters of a mixed linear model associated with agronomic 
practices and cultivars will be modeled as fixed effects, while various levels of residual variability 
associated with split-plot experimental units will be modeled as random effects. 

For an introductory course on Quantitative Genetics, we will focus primarily on genetic 
improvement, a little bit on cultivar development projects, and no time will be spent on product 
placement projects. 

Decision-Making Process 

Conceptually, genetic improvement consists of a simple two-step, iterative decision-making 
process (Fig. 5): 
1) selection of parents for crosses and 2) evaluation of their segregating progeny for the next 
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generation of parents and development of cultivars (Fehr, 1991). Operational implementation of 
genetic improvements for any given species requires far more detail. 

For example, Comstock (1978) outlined the major activities involved in genetic improvement by 
plant breeders (below). 

The details of any particular breeding program will likely consist of many activities. At the same 
time, it is important to categorize these activities according to the goals that transcend all plant 
breeding programs. 

Fig. 5 Genetic Improvement Process by Plant Breeders 

A Brief History of Quantitative Genetics 

Quantitative genetics addresses the challenge of connecting traits measured on quantitative 
scales with genes that are inherited and measured as discrete units. This challenge was originally 
addressed through the development of theory between 1918 and 1947. The theory is now referred 
to as the modern synthesis and required another 50 years for technological innovations and 
experimental biologists to validate. Luminaries such as RA Fisher, Sewell Wright, JBS Haldane, 
and John Maynard Smith were able to develop this theory without the benefit of high throughput 

PLANT BREEDING BASICS  |  195



‘omics’ technologies. Indeed, modern synthesis was developed before knowledge of the structure 
of DNA. 

Unlike animal breeders, plant breeders implement breeding processes in organisms that cannot 
be protected from highly variable environments. Because plants are rooted in the sites in which 
they are planted, they have evolved unique adaptive mechanisms, including whole-genome 
duplications that enable biochemical diversity through secondary metabolism and multiple forms 
of reproductive biology. 

Because of the reproductive and biochemical diversity in domesticated crops, plant breeders felt 
little need to develop quantitative genetics beyond initial concepts associated with the Analysis 
of Variance (ANOVA; Fisher, 1925; 1935). Thus, plant breeders focused their efforts on the 
development of field plot designs and careful plot management practices to ensure balance in 
field plot data for ANOVA. 

Modern Synthesis Theory 

The lack of reproductive and biochemical diversity in animal species created constraints that 
forced animal breeders to concentrate their efforts on the development of quantitative genetics 
beyond the ideas of Fisher (1918, 1928). JL Lush (1948) and his student CR Henderson (1975) 
realized that genetic improvement of quantitative traits in domesticated animal species could 
not take advantage of replicated field trials that are based on access to cloning, inbreeding, and 
the ability to produce dozens to thousands of progenies per individual. With these constraints, it 
was not possible to obtain precise estimates of experimental error or Genotype by Environment 
interaction effects using classical concepts from the ANOVA. So, they developed the statistical 
concepts of Mixed Model Equations (MME) to estimate breeding values of individuals with 
statistical properties of Best Linear Unbiased Prediction (BLUP). These very powerful statistical 
approaches were largely ignored by plant breeders until about 1995 (Bernardo, 1996). 

Marker Technologies 

The power of these methods is derived from knowledge of genealogical relationships. For some 
commercial plant breeding organizations, genealogical information had been carefully recorded 
for purposes of protecting germplasm. Thus, it was relatively easy for commercial breeding 
companies such as Pioneer and Monsanto to implement these methods. Next, international plant 
breeding institutes began to incorporate mixed linear models to estimate breeding values in 
their genetic improvement programs (Crossa et al, 2004); again, it was fairly easy to do this 
with extensive pedigree information. Since about 2005, many plant quantitative geneticists have 
published extensively on the benefits of this approach to genetic improvement of crops (Piepho, 
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2009), although there remain many academic plant breeding organizations that do not utilize 
MME to estimate breeding values with BLUP statistical properties, primarily because pedigrees 
of lines developed by academic programs have not been widely shared, nor aggregated into a 
shared repository. In parallel to the adoption of MME by plant breeders, there has been the 
development of relatively inexpensive genetic marker technologies. These have enabled the use 
of MME for Genomic Estimates of Breeding Values (GEBV; Meuwissen, 2001), thus overcoming 
the lack of genealogical knowledge for many crop and tree species. 

Trait Measures 

Objectives: Demonstrate ability to distinguish among the various types of phenotypic and 
genotypic traits that are assessed routinely in a plant breeding program. 

Categorical Scales 

In the context of plant breeding, quantitative genetics provides us with a genetic understanding 
of how quantitative traits change over generations of crossing and selection. Recall traits can be 
evaluated on categorical (Fig. 6) or quantitative scales. If the trait of interest is evaluated based 
on some quality, for example, disease resistance, flower color, or developmental phase, then it 
is considered a categorical trait. There are three further distinctions that can be made among 
categorical scales: 

• Binary consists of only two categories such as resistant and susceptible or small and large. 
• Nominal consists of unordered categories. For example, viral disease vectors might be 

categorized as insects, fungi, or bacteria. 
• Ordinal consists of categorical data where the order is important. For example, disease 

symptoms might be classified as none, low, intermediate, and severe. 
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Fig. 6 Flower color variation in Aloe chabaudii from Manica province 
in Mozambique. Photo by Ton Rulkens, licensed under CC-SA 3.0 via 
Wikimedia Commons. 

Quantitative Scales 

Binary, nominal, and ordinal data are typically analyzed using Generalized Linear Models. Such 
models require that we model the error structures using Poisson or Negative Binomial 
distributions and are beyond the scope of introductory quantitative genetics. It is important to 
remember, however, that it is not advisable to apply General Linear Models to categorical data 
types. 

There are two further distinctions of traits that are evaluated on quantitative scales: 

• Discrete data occur when there are gaps between possible values. This type of data usually 
involves counting. Examples include flowers per plant, number of seeds per pod, number of 
transcripts per sample of a developing tissue, etc. 

• Continuous data can be measured and are only limited by the precision of the measuring 
instrument. Examples include plant height, yield per unit of land, seed weight, seed size, 
protein content, etc. 
◦ In the context of measurement, Precision refers to the level of detail in the scale of the 

measurement. 
◦ Accuracy refers to whether the measurement represents the true value. 
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Types of Models 

Objectives: Be able to place plant breeding activities within a framework of three categories 
based on goals: 

• Genetic improvement 
• Cultivar development 
• Product placement 

Definition and Purpose of Models 

Models are representations or abstractions of reality. Some models can be very useful, e.g., 
prediction of phenotypes, even if they are not accurate. If data are modeled well, they can be 
used to generate useful graphics that will inform the breeder about data quality, integrity, and 
novel discoveries. Most often, predictive models are in the form of mathematical functions. Also, 
there are models for organizing data, analyses, processes, and systems. Yes, breeding systems and 
genetic processes can be represented as sets of mathematical equations. Historically the subject 
of optimizing a breeding system has been approached through ad hoc management activities 
that are often tested through trial and error. In the future, design and development of plant 
breeding systems will need to be treated with the same rigor that engineers use to design optimal 
manufacturing systems. Thus, it will be important to learn how to model breeding systems as 
mathematical functions. 

Data Modeling 

Even if it were possible to record data without error, as soon as we evaluate a trait and record the 
value of a living organism, we lose information about the organism. The challenge is to develop a 
data model that will minimize recording errors and loss of information. 

What Is Data Modeling? 

• Data modeling is the process of defining data requirements needed to support decisions. 
• Data modeling is used to assure standard, consistent, and predictable management of data 

as a resource for making decisions. 
• Data models support data and decision systems by providing definitions and formats. If the 

data are modeled consistently throughout a plant breeding program, then compatibility of 
data can be achieved. 
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If a single data structure is used to store and access data, then multiple data analyses can share 
data. 

Steps for Modeling Data in a Plant Breeding Project 

• Outline the plant breeding process. 
• Determine the experimental or sampling units that will be evaluated at each step in the 

process. 
• Determine the number of experimental or sampling units that will be evaluated. 
• Characterize the experimental and sampling units as well as the traits that will be evaluated 

at each step in the process. 

An experimental unit is defined as the basic unit to which a treatment will be applied. A 
sampling unit is defined as a representative of a population of interest. In quantitative genetics, 
we evaluate responses (traits) of experimental or sampling units on continuous scales, e.g., grain 
yield, plant height, harvest index, etc. Note that a measurement taken on a continuous scale 
is not the same as a continuously measured trait. Continuously measured traits such as grain 
fill, transpiration, disease progression, or gene expression are measured continuously over the 
growth and development of an organism. Historically, evaluation of continuously changing traits 
has been too labor-intensive to justify their expense. The emergence of ‘phenomics’ using image 
processing will overcome the limitations of acquiring the data. However, the need to store and 
manage ‘big data’ from phenomics is going to require novel data models and computational 
infrastructure, or else the acquisition of such data will be meaningless. 

Organizing Data 

Data models address the need to organize data for subsequent analysis. 

A simple data model consists of a Row x Column matrix, where all experimental or sampling 
units are represented in rows, and the evaluated characteristics or attributes for each unit are 
recorded in the columns (Fig. 7): 
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Fig. 7 A matrix, A, for representing data. 

Alternatively, the Ar x c matrix can be represented as: 

• A = {aij}, for i = 1,2,3 … r and j = 1,2,3 … c 
• i would represent line 1, line2, line3 … line r and 
• j would represent location, replication, SNP locus 1, disease rating, … yield, etc. 

Preserving Data 

While the A(r x c) matrix is sufficient for small research projects, it is inadequate and cumbersome 
for breeding programs consisting of multiple types of evaluation trials at multiple stages of 
development. For such programs, relational databases are designed to optimize the ability to 
search and prepare data for analysis and interpretation using statistic and genetic models (Fig. 
7). Further unless data in an A(r x c) matrix is disseminated through “read-only” access, there is 
potential for alteration of originally recorded data. Thus, the use of Excel files, too commonly 
used to store experimental data in an A(r x c) matrix, can create serious ethical issues. While 
such issues do not disappear with relational databases, relational databases enable more effective 
protection of data as originally recorded. Recently, a publicly available database designed for 
organizing data from plant breeding projects has been developed. Known as the Breeding 
Management System, it is part of the Integrated Breeding Platform designed and developed 
by the Generation Challenge Program of the Consultative Group of International Agricultural 
Research Centers. 
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A Relational Database 

Fig. 8 A relational database for data management plant breeding research. 

While the development of relational databases (Fig. 8) is outside of the scope of this course, 
it is important to note that plant breeders routinely work with database developers to design, 
implement, and populate relational databases. 

Phenotypic Models 

For the most part, plant breeders rely on linear models to represent measured traits. While we 
will concentrate on statistic and genetic models for continuous traits, it is important to recognize 
that there are well-developed data analysis methods for binary, nominal, and ordinal traits (see 
McCullagh and Nelder, 1989 or Christensen, 1997 for explanations of Generalized Linear Models). 
A general (not Generalized) linear model for the phenotype can be denoted as in Equation 1: 

 General linear model for the phenotype. 

where: 
 = phenotype of individual i, 

 = mean phenotype value of individual i, 
 = random variability (or lack of precision) in the measurement of the phenotype of 

individual i. 

Further, we often assume that the variability associated with each measurement of variables, ei, is 
distributed as random identical and independent Normal variables. This simple model is typically 
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associated with the hypothesis that the only source of variability is due to chance (noise). We 
can extend the simple model to include genetic (G) and environmental (E) sources (signals) of 
variability, . 

Two Linear Models 

Scalar Notation 

We will utilize two types of models to analyze data Equations 2 and 3): 

 Linear model for phenotype. 

where: 
 = intercept at the y-axis, 
 = the slope of the regression line, 
 = the genotypic value, 
 = unspecified or residual sources of variability. 

 Linear model for phenotype. 

where: 
 = the phenotypic response, 

 = the population mean, 
 = the genotypic unit, 
 = replicates of the genotypic units, 
 = unspecified or residual sources of variability. 

The parameters of Equation 2 represent the intercept and slope of a line that can be fit to data 
consisting of pairs of genotypic values, Gi, and phenotypic responses, where the genotypic values 
are continuous and known (i.e., measured without error) while the phenotypic data are measured 
with error in plots (experimental units). The parameters of Equation 3 represent a population 
mean, genotypic units, gi, rj replicates of the genotypic units, and the phenotypic, Yij responses. 
The genotypes are usually categorical designators of distinct segregating lines, hybrids, cultivars, 
clones, etc. 

We typically estimate the parameters of Equations 2 and 3 using least squares methods. These 
methods are based on the idea of minimizing the squared differences between the model 
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parameters and the measured phenotypic value (Equation 4). For example, using Equation 2, we 
want to minimize the difference as: 

 Model for squared differences. 

where: 
 are as described previously. 

Taking the partial derivatives of Equation 3 with respect to β0 and β1 and setting the resulting 
two equations = 0, we find the slope using Equation 5: 

 Formulae for calculating intercept and slope. 

where: 
 = the genotypic variance, 

 = covariance of G and Y, 
 = mean of Y, 
 = mean of X. 

The result is a prediction equation (Equation 6): 

</> 

 Prediction model. 

where: 
 = the estimates of these terms, 

 = predictor variable, genotype, Gi. 

Note that the predicted values are placed on the fitted line. Such values are sometimes referred to 
as ‘shrunken’ estimates because, relative to the observed values, they show much less variability. 

If it were possible to obtain the true genotypic values, Gi, then we could routinely use Equation 2 
to predict the phenotypic performance of individual i. Instead, plant breeders have used Equation 
3 and its expanded versions to evaluate segregating lines and cultivars. 

204  |  PLANT BREEDING BASICS



Matrix Notation 

Equation 2 also can be represented by Equation 7: 

 Matrix model and solution for phenotype. 

where: 
 = phenotype, 
 = matrix or vector of genotype, 

 = vector or residual or error. 

And Equation 3 could be represented by Equation Equation 8: 

 Model for phenotype. 

where: 
 = phenotype , 
 = vector of replication, 
 = vector of genotype. 

When represented this way, though, Equation 3 is usually misinterpreted by beginning students 
often, as the matrix form of the equation with an added set of the parameter Z. The matrix form 
of Equation 2 is actually a mixed linear model equation (Equation 9) and not a simple expansion 
of the matrix form of Equation 1. 

 Matrix model linear model for phenotype. 

where: 
 = vector of observations (phenotypes), 
 = Incidence matrix for fixed effects, 

 = vector of unknown fixed effects (to be estimated), 
 = Incidence matrix of random effects, 
 = a vector of random effects (genotypic values to be predicted), 
 = a vector of residual errors (random effects to be predicted). 
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Exploratory Data Analysis (EDA) 

Objectives 

• Distinguish between descriptive and inferential statistics. 
• Conduct and interpret exploratory data analyses. 
• Distinguish parameters from estimators and estimates. 
• Estimate means in both balanced and unbalanced data sets. 
• Estimate variances, covariances, and correlations in balanced data sets. 

Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Statistical Inference consists of two components: estimation and hypothesis testing. 
In this section, we review some introductory estimation concepts. 

Statistical Inference: Hypothesis Testing 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots, and simple descriptive statistics such as the range (maximum, 
minimum), quartiles, and the sample average, median, and mode. These exploratory data analysis 
(EDA) techniques should always be used prior to estimation and hypothesis testing. However, prior to 
conducting EDA, the phenotype should be modeled using the parameters in the experimental and 
sampling designs. 

Exploratory Data Analyses 

Preliminary insights come from graphical data summaries such as bar charts, histograms, box 
plots, stem-leaf plots, and simple descriptive statistics such as the range (maximum, minimum), 
quartiles, correlations, and coefficients of variation. These exploratory data analysis (EDA) 
techniques that provide descriptive statistics should always be used prior to estimation and 
hypothesis testing. 

Estimation: Sample Average 

In population and quantitative genetics, parameters are quantities that are used to describe 
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central tendencies and dispersion characteristics of populations. Parameters are usually 
presented in the context of theoretical models used to describe quantitative and population 
genetics of breeding populations. Parameters of interest in population and quantitative genetics 
include frequencies, means, variances, and covariances. 

Because populations often consist of an infinite or very large number of members, it may be 
impossible to determine these quantities. Instead, statistical inferences, i.e., estimates, about the 
true but unknowable parameters are determined from samples. The rule by which a statistical 
estimate of a parameter is constructed is known as the estimator. For example, the description of 
how to calculatea sample average given by Equation 10: 

 Formula for estimating sample average. 

where: 
 = the sample, i, 

 = number of samples. 

This average represents an estimator of the population mean, while the calculated value, e.g., 
132.38, obtained from 25 (n) samples (Xi) from a population would be an estimate of the 
population average. 

Estimation of Means 

The most common inferential statistic is the estimate of a mean. Computing arithmetic means, 
either simple or weighted within-group averages represents a common approach to summarizing 
and comparing groups. Data from most agronomic experiments include multiple treatments 
(or samples) and sources of variability. Further, the numbers of observations per treatment 
often are not equal; even if designed for balance, some observations are lost during the course 
of an experiment. Thus, most data sets come from experiments that have multiple effects of 
interest and are not balanced. In such situations, the arithmetic mean for a group may not 
accurately reflect the “typical” response for that group because the arithmetic mean may be 
biased by unequal weighting among multiple sources of variability. The calculation of Least 
Square Means, lsmeans, was developed for such situations. In effect, lsmeans are within-group 
means appropriately adjusted for the other sources of variability. The adjustments made by 
lsmeans are meant to provide estimates as though the data were obtained from a balanced design. 
When an experiment is balanced, arithmetic averages and lsmeans agree. 
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Estimation of Means: Example 

Consider a data set consisting of 3 cultivars evaluated in a Randomized Complete Block Design 
consisting of 5 replicates at each of 3 locations (Table 1). Despite exercising best agronomic 
practices, note that some plots at some locations did not produce phenotypic values. 

The estimated means and number of observations for each cultivar indicate that there is very 
little difference among the cultivars, although cultivar C appears to have the highest yield (Table 
2). 

A closer investigation of the data reveals that the means are unequally weighted by location 
effects. Recalculating the means for the cultivars indicates more distinctive differences among 
the cultivars once the differences among environments were taken into account (Table 3). 

Table 1 Sample data with missing 
values. 

Cultivar Location Yj,k 

A Ames 17, 28, 19, 21, 19 

A Sutherland 43, 30, 39, 44, 44 

A Castana -, -, 16, -, – 

B Ames 21,21, -, 24, 25 

B Sutherland 39, 45, 42, 47, – 

B Castana -, 19, 22, -, 16 

C Ames 22, 30, -, 33, 31 

C Sutherland 46, -, -, -, – 

C Castana 25, 31, 25, 33, 29 

Table 2 Trait average 
values for three 

cultivars, with the same 
sample number. 

Cultivar N Average 

A 11 29.1 

B 11 29.2 

C 11 30.2 
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Table 3 Unequally 
weighted trait 
average values. 

Cultivar lsmeans 

A 25.6 

B 28.3 

C 34.4 

Estimation of Variances 

If we model a trait value as  (Equation 1), then the estimator of the variance of the 
population consisting of individuals, i = 1, 2, 3, …. , N is written as in Equation 11: 

 Formula for calculating the variance of a population of individuals, 

where: 
 = the variance of the population of trait y values, 

 = population size , 
 = population mean. 

Since it is not possible to evaluate a population of a crop species (think about it), we usually take 
a sample of individuals representing the population, i = 1, 2, 3, …, n, where n << N. The estimator 
of the sample variance from a sample of n values is represented in Equation 12: 

 Formula for estimating sample variance, 

where: 
 = the sample variance, 
 = trait value of individual i, 
 = trait mean value. 

PLANT BREEDING BASICS  |  209



Estimation of Covariance 

The covariance is a measure of the joint variation between two variables. Let us designate one 
trait X and a second trait Y. We can model Y as before and we can model X in a similar manner, 
i.e., 

 Formula for estimating trait value, 

where: 
 = ith value of trait X, 

 = mean of trait X, 
 = random variability in trait values. 

and the estimator of the variance of X is obtained using Equation 14: 

 Formula for estimating variance of the trait, X. 

where: 
 = ith value of trait X, 

 = mean of trait X, 
 = random variability in trait values. 

Thus, the estimator of the covariance of X and Y is as in Equation 15: 

 Formula for estimating covariance of the traits, X and Y. 

where: 
 = covariance of X and Y, 

 = mean of population of Xs, 
 = mean of population of Ys, 

 are as defined previously. 

Again, it is not possible to evaluate a population, so we usually take a sample of individuals 
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representing the population, i = 1,2,3 … n, where n << N. So, the estimator of a sample covariance 
is obtained using Equation 16: 

 Formula for calculating covariance of the traits, X and Y, from a sample. 

where: 
 = the covariance of X and Y, 

 = mean of sample of Xs, 
 = mean of sample of Ys. 

Estimation of Variance Components 

If we extend our simple model to include genetic and environmental sources of variability, as 
mentioned previously, as , then, noting that µ is a constant and applying 
some algebra, we can show that the variance (V) of Y is as in Equation 17: 

 Formula for estimating variance components. 

where: 
 = the variance of trait Y, 

 = the genotypic, environmental, and random variability, 
respectively, 

 = the covariance of G and E. 

The assumption is that the errors are independently distributed. If we further assume that 
genotype and environment are independent and that there is no genotype x environment 
interaction, the variance and variance components are estimate with Equation 18: 

 Formula for estimating variance components, in the absence of covariance. 

where: 
 are as defined previously. 
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Questions to Consider 

A question to consider is whether the parameters of the linear model Y = µ + G + E + e represent 
fixed or random effects, because this determination will affect the way in which we estimate 
variance components and whether each is contributing significantly to the overall phenotypic 
variability. This determination depends on the inference space to which results are going to be 
applied. Fixed effects denote components of the linear model with levels that are deliberately 
arranged by the experimenter, rather than randomly sampled from a population of possible levels. 
Inferences in fixed effect models are restricted to the set of conditions that the experimenter has 
chosen, whereas random effect models provide inferences for a population from which a sample 
is drawn. 

As a practical matter, it is hard to justify designating a parameter as a random effect if the 
parameter space is not sampled well. Consider environments, for example, since we cannot 
control the weather, it is tempting to designate environments as random effects, however 
drawing inferences to a targeted population of environments will be difficult if we sample a small 
number of environments, say less than 40. Thus, as a practical matter, the genetic improvement 
component of a breeding program will consider environments as fixed effects (or nuisance 
parameters), because our main interest is in drawing inferences about the members of a breeding 
population and their interactions with environments, wheras the product placement component 
of a breeding program will evaluate a relatively small number of selected genotypes in a large 
number of environments. Thus, for this phase the models will consider cultivars (lines, hybrids, 
synthetics, etc.) as fixed effects and environments as random effects. 

Mixed Models 

Because the inference space of interest for genetic improvement is derived from random samples 
of genotypes obtained from a conceptually large breeding population, we do not consider 
genotypes as fixed effects until the genotypes have been selected for a cultivar development 
program. At the same time it is a rare experimental design that does not include a fixed effect. 
Often random effects, such as environments are classified as fixed effects in mixed models so 
that inferred predictions are determined using computational methods that provide restricted 
maximum likelihood methods. More on this topic can be found in the section on Statistical 
Inference. 
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Installation of R 

Introduction and Objectives – Installation of R 

• Learn to download and install R and R Studio. 
• Learn to start an R analysis project. 
• Learn how to upload data that is CSV formatted. 

Background 

R is a powerful language and environment for statistical computing and creating graphics. The 
main advantages of R are the fact that R is a free software and that there is a lot of help 
available. It is quite similar to other programming tools such as SAS (not freeware), but more 
user-friendly than programming languages such as C++ or FORTRAN. You can use R as it is, but 
for educational purposes we prefer to use R in combination with the RStudio interface (also free 
software), which has an organized layout and several extra options. 

Directory Of R Commands Used 

• getwd() 
• setwd() 
• ? 
• help.search() 
• example() 
• read.csv() 
• rm() 
• rm(list=()) 
• head() 
• hist() 
• attach() 
• boxplot() 
• str() 
• as.factor() 
• aov() 
• summary() 

References 

Up and Running with R (Internet resource) 

PLANT BREEDING BASICS  |  213

https://www.lynda.com/R-tutorials/Up-Running-R/120612-2.html


Exercise 

Imagine that you’ve been recently hired as a data analyst for a brand new seed company and have 
been asked by your supervisor to conduct an analysis of variance (ANOVA) on yield trial data 
from 3 synthetic maize populations planted in 3 reps each. Your company does not have funds 
to purchase commercial statistical software, thus you must either do the analysis by hand or use 
freely available software. Since you will have to analyze much larger data sets in the near future, 
you opt to learn how to carry out the ANOVA using the freely available software R and R-Studio. 

Install R 

To install R on your computer, go to the home website of R and do the following (assuming you 
work on a Windows computer): 

• Click CRAN under Download,Packages in the left bar 
• Choose a download site close to you (eg: USA: Iowa State University, Ames, IA) 
• Choose Download R for Windows 
• Click Base 
• Choose Download R 3.1.1 for Windows and choose default answers for all questions (click 

“next” for all questions) 

Install RStudio 

After finishing above setup, you should see an icon on your desktop. Clicking on this would 
start up the standard interface. We recommend, however, using the RStudio interface. To install 
RStudio, go to the RStudio homepage and do the following (assuming you work on a windows 
computer): 

• Click Download RStudio 
• Click Desktop 
• Click RStudio 0.98.977 – Windows XP/Vista/7/8 under Installers for ALL Platforms to 

initiate download 
• Open the .exe file from your computer’s downloads and run it and choose default answers 

for all questions (click “next” for all questions) 

RStudio Layout 

1. Script Window: In this window, collections of commands (scripts) can be edited and saved. 
If this window is not present upon opening RStudio, you can open it by clicking File→New 
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File→R Script. Just typing a command in the Script window and clicking enter will not 
cause R to run the command; the command has to get entered in the Console window 
before R executes the command. If you want to run a line from the script window, you can 
click Run on the toolbar or press CTRL+ENTER to enter the line into the console view. 

2. Environment / History Window: Under the Environment tab you can see which data and 
values R has in its memory. The History tab shows what has been entered into the console. 

3. Console window: Here you can type simple commands after the > prompt and R will then 
execute your command. This is the most important window, because this is where R 
actually runs commands. 

4. Files / Plots / Packages / Help: Here you can open files, view plots (also previous plots), 
install and load packages or use the help function. 

5. You can change the size of each of the windows by dragging the grey bars between the 
windows. 

Working Directory 

Your working directory is a folder on your computer from where files can be entered, or read, 
into R. When you ask R to open a file with a read command, R will look in the working directory 
folder for the specified file. When you tell R to save a data set or figure which you’ve created, R 
will also save the data or figure as a file in the same working directory folder. 
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Set your working directory to a folder where all of the example data files for this lesson are 
located. 

1. Create a folder on your desktop; for this example the folder will be called wd . Then, obtain 
the default working directory by entering the command getwd()  into the console 
window. R returns the default working directory below. 

> getwd() 

> [1] “C:/Users/<Username>/Documents” 

2. Next, set the working directory to the folder on your desktop, wd , using the setwd() 
command in the Console window: 

> setwd(“C:/Users/<Username>/Desktop/wd”) 

Notice that to set our working directory to a folder on our desktop, we enter everything that was 
returned by R from the getwd() command before the word Documents, change Documents to 
Desktop, then add a forward slash followed by the name of our folder ( wd ). 

Make sure that the slashes are forward slashes and that you don’t forget the quotation marks. R is 
case sensitive, so make sure you write capitals where necessary. Within the RStudio interface you 
can also go to Session → Set working directory to select a folder to be your working directory. 

Libraries 

R can do many kinds of statistical and data analyses. The analyses methods are organized in so-
called packages. With the standard installation, most common packages are installed. To get a list 
of all installed packages, go to the packages window (lower right in RStudio). If the box in front of 
the package name is ticked, the package is loaded (activated) and can be used. You can also type 
library() in the console window to view the loaded packages. 

There are many more packages available on the R-website. If you want to install and use a 
package (for example, the package called “geometry”) you should: 

1. Install the package: click on the “packages” tab at the top of the lower-right window in 
RStudio. Click “install”, and in the text box under the heading “packages”, type “geometry”. 
You can also simply enter install.packages(”geometry”) in the console window to install the 
package. 

2. Load the package: under the “packages” tab at the top of the lower-right window in 
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RStudio, check the boxes of the packages you wish to load (i.e. “geometry”). You can also 
simply type library(”geometry”) in the console window to load the package. 

Getting Help in R 

If you know the name of the function you want help with, you can just type a question mark 
followed by the name of the function in the console window. For example, to get help on aov, just 
enter: 

> ?aov 

Sometimes you don’t know the exact name of a function, but you know the subject on which you 
want help (i.e., Analysis of Variance). The simplest way to get help in R is to click the “Help” 
tab on the toolbar at the top of the bottom-right window in RStudio, then enter the subject or 
function that you want help within the search box at the right. This will return a list of help pages 
pertaining to your query. 

Another way to obtain the same list of help pages is by entering the help.search command 
in the Console. The subject or function which you’d like information about is put inside of 
brackets and quotation marks, directly following the help.search command. For example, to 
obtain information about Analysis of Variance, enter into the console: 

> help.search(“Analysis of Variance”) 

If you’d like to see an example of how a function is used, enter “example” followed by the function 
that you’d like to see an example of (within quotation marks and brackets). For instance, if we 
wanted to see an example of how the aov function can be used, we can enter into the console: 

> example(“aov”) 

An example is returned in the console window. 

Reading the CSV File 

Now, we want to read the CSV file from our working directory into RStudio. At this point, we 
learn an important operator: <- . This operator is used to name data that is being read into the R 
data frame. The name you give to the file goes on the left side of this operator, while the command 
read.csv goes to its right. The name of the CSV file from your working directory is entered in the 
parenthesis and within quotations after the read.csv command. The command header = T is used 
in the function to tell R that the first row of the data file contains column names, and not data. 

Read the file into R by entering into the Console: 
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data <- read.csv(“Review Models Install R ALA data.csv”, header = T) 

Tip: If you are working out of the Console and received an error message because you typed 
something incorrectly, just press the ↑ key to bring up the line which you previously entered. 
You can then make corrections on the line of code without having to retype the entire line in the 
console window again. This can be an extremely useful and time saving tool when learning to use 
a new function. Try it out. 

If the data was successfully read into R, you will see the name that you assigned the data in the 
Workspace/History window (top-right). 

Examining the Data 

Let us look at the first few rows of the data. We can do this by entering the command 
head(data)  in the console. If we want to look at a specific number of rows, let us say just the 
first 3 rows, we can enter head(data, n=3)  in the Console. Try both ways. 

First, enter into the console: 

> head(data) 

Pop  Rep  Yield 

1   30    1  137.1 

2   30    2  124.4 

3   30    3  145.9 

4   40    1  166.1 

5   40    2  147.4 

6   40    3  142.7 

Now, try looking at only the first 3 rows: 

> head(data) 

Pop  Rep  Yield 

1   30    1  137.1 

2   30    2  124.4 
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3   30    3  145.9 

Viewing and Removing Datasets 

Now, let us say we are finished using this dataset and want to remove it from the R data frame. 
To accomplish this, we can use the rm command followed by the name of what we want removed 
in parenthesis. Let us remove the data from the R data frame. Enter into the console rm(data) . 

rm(data) 

The dataset data should no longer be present in the Workspace/History window. 

What if we have many things entered in the R data frame and want to remove them all? There are 
two ways that we can do this. To demonstrate how, let us first enter 3 variables (x,y, and z) into 
the R data frame. Set x equal to 1, y equal to 2, and z equal to 3. 

x<-1 

y<-2 

z<-3 

Clicking on ‘clear’ in the History/Environment window (top right) will clear everything in the R 
data frame. Another way to remove all data from the R data frame is to enter in the console: 

rm(list=1s()) 

Try both ways. 

EDA with R 

Objectives 

• Students will conduct exploratory data analyses (EDA) on data from a simple Completely 
Randomized Design (CRD). 

• Assess whether students know how to interpret results from EDA. 
• Students will conduct an Analysis of Variance (ANOVA) on data from a simple CRD. 

Directory Of R Commands Used 

• getwd() 
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• setwd() 

• read.csv() 

• rm() 

• rm(list=()) 

• hist() 

• attach() 

• boxplot() 

• str() 

• as.factor() 

• aov() 

• summary() 

Set Working Directory 

Before you can conduct any analysis on data from a text file or spreadsheet, you must first enter, 
or read, the data file into the R data frame. For this activity, our data is in the form of an Excel 
comma separated values (or CSV) file; a commonly used file type for inputting and exporting data 
from R. 

Make sure that the data file for this exercise is in the working directory folder on your desktop. 

Note: We previously discussed how to set the working directory to a folder named on your 
desktop. For this activity, we will repeat the steps of setting the working directory to reinforce 
the concept. 

In the Console window, enter getwd() . R will return the current working directory below the 
command you entered: 

getwd() 

[1] “C:/Users/<Username>/Documents” 

Set the working directory to the folder on your desktop by entering setwd() . For a folder 
named ‘wd’ on our desktop, we enter: 

setwd(“C:/Users/<Username>/Desktop/wd”) 

Please note that the working directory can be in any other folder as well, but the data file has to 
be in that specific folder. 

220  |  PLANT BREEDING BASICS



Reading the CSV File 

Now, we want to read the CSV file from our working directory into RStudio. At this point, we 
learn an important operator: <- . This operator is used to name data that is being read into 
the R data frame. The name you give to the file goes on the left side of this operator, while the 
command read.csv goes to its right. The name of the CSV file from your working directory, in 
this case CRD.1.data.csv, is entered in the parenthesis and within quotations after the read.csv 
command. The command header = T is used in the function to tell R that the first row of the data 
file contains column names, and not data. 

data <- read.csv(“CRD.1.data.csv“, header = T) 

Tip: If you are working out of the Console and received an error message because you typed 
something incorrectly, just press the ↑ key to bring up the line which you previously entered. 
You can then make corrections on the line of code without having to retype the entire line in the 
console window again. This can be an extremely useful and time saving tool when learning to use 
a new function. Try it out. 

If the data was successfully read into R, you will see the name that you assigned the data in the 
Workspace/History window (top-right). 

Exploring the Data 

Let us do some preliminary exploring of the data. 

Read the data set into the R data frame. 

> data <- read.csv(“CRD.1.data.csv“, header = T) 

First, let us look at a histogram of the yield data to see if they follow a normal distribution. We 
can accomplish this using the hist command. 

Enter into the console: 

> hist(data$Yield, col=”blue”, main= “Histogram of Yield of 3 Synthetic Maize Populations”, 

xlab=”Yield (bushels/acre)”, ylab=”Frequency”) 

R returns the histogram in the Files/Plots/Packages/Help window (bottom-right). 
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Histogram 

Fig. 8 

Let us go through the command we just entered: data$Yield  specifies that we want to plot 
the values from the column Yield in the data, col=”blue”  indicates which color the histogram 
should be, the entry in quotations after main=  indicates the title that you’d like to give the 
histogram, the entries after xlab=  and ylab=  indicate how the x and y axes of the histogram 
should be labeled. The histogram appears in the bottom-right window in RStudio. 

The histogram can be saved to your current working directory by clicking ‘export’ on the toolbar 
at the top of the lower-right window, then clicking “save plot as PNG” or “save plot as a PDF”. 
You may then select the size dimensions you would like applied to the saved histogram. 

Boxplots 

Let us now look at some boxplots of yield by population for this data. First, enter into the Console 
window attach(data) . The attach command specifies to R which data set we want to work 
with, and simplifies some of the coding by allowing us just to use the names of columns in the 
data, i.e. Yield  vs. data$Yield . After we enter the attach command, we’ll enter the boxplot 
command. 

> attach(data) 

> boxplot(Yield~Pop, col=”red”, main=”Yield by Population”, xlab=”Synthetic Population”, 

ylab=”Yield”) 

R returns the boxplot in the bottom-right window. 
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Fig. 9 

Let us go through the boxplot command: Yield~Pop  indicates that we want boxplots of the 
yield data for each of the 3 populations in our data, col=  indicates the color that we want our 
boxplots to be, main=  indicates the title we want to give the boxplots, and xlab=  and ylab= 
indicate what we want the x and y axes labeled as. 

Note: Yield is capitalized in our data file, thus it MUST also be capitalized in the boxplot 
command. 

Mean and Coefficient of Variance 

The coefficient of variance can be calculated for each population in the data set. Looking at 
the data, we can see that lines 1 to 3 pertain to population 30. We know that the coefficient of 
variation for a sample is the mean of the sample divided by the standard deviation of the sample. 
By using the command mean() , we can calculate the mean for a sample. Remember that to 
specify a column from a data frame, we use the $  operator. If we want to calculate the mean of 
population 30 from the data (rows 1 to 3 in the data), we can enter 

> mean(data$Yield[1:3]) 

To calculate the standard deviation of the yield for population 30, enter 

> sd(data$Yield[1:3]) 

The coefficient of variance is therefore calculated by entering 

> mean(data$Yield[1:3])/sd(data$Yield[1:3]) 

PLANT BREEDING BASICS  |  223



One-Factor ANOVA of a CRD 

Now that we’ve gained some intuition about how the data behave, let us carry out an ANOVA 
with one factor (Pop) on the data. We first need to specify to R that we want Population to be a 
factor. Enter into the Console 

> Pop<-as.factor(Pop) 

Let us go through the command above: as.factor(data$Pop)  specifies that we want the 
Pop  column in dataset data  to be a factor, which we’ve called Pop . 

Now that we have population as a factor, we’re ready to conduct the ANOVA. The model that we 
are using for this one-factor ANOVA is Yield=Population. 

In the Console, enter 

> mean(data$Yield[1:3])/sd(data$Yield[1:3]) 

Interpret the Results 

Let us look at the ANOVA table. Enter out in the Console window. 

> out 

In this ANOVA table, the error row is labelled Residuals. In the second and subsequent columns 
you see the degrees of freedom for Pop and Residuals (2 and 6), the treatment and error sums of 
squares (6440 and 1011), the treatment mean square of 3220, the error variance = 169, the F ratio 
and the P value (19.1 and 0.0025). The double asterisks (**) next to the P value indicate that the 
difference between the yield means of the three populations is significant at 0.1% (i.e. we reject 
the null hypothesis that the yield means of each population are statistically equivalent). Notice 
that R does not print the bottom row of the ANOVA table showing the total sum of squares and 
total degrees of freedom. 

Hypothesis Tests 

Objectives 

Demonstrate ability to interpret types of errors that can be made from testing various kinds of 
hypotheses. 

224  |  PLANT BREEDING BASICS



Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots and simple descriptive statistics such as the range 
(maximum, minimum), quartiles, and the sample average, median, mode. These exploratory data 
analysis (EDA) techniques should always be used prior to estimation and hypothesis testing. 
However, prior to conducting EDA, the phenotype should be modeled using the parameters in 
the experimental and sampling designs. 

Null and Alternative Hypotheses 

Hypotheses are questions about parameters in models. For example, “Is the average value for a 
trait different than zero?” is a question about whether the parameter µ is non-zero. Formally, 
the proposition , is called the null hypothesis, while a proposition  is 
called an alternative hypothesis. 

A test statistic is used to quantify the plausibility of the data if the null hypothesis is true. For this 
simple hypothesis the value of the test statistic should be close to zero if the null hypothesis is 
true and far from zero if the alternative hypothesis is true. Notice that in all linear models there is 
a parameter, ε, included to indicate that there is some random variability in the data that cannot 
be ascribed to the other parameters in the model. It is entirely possible that the variability in the 
data is due entirely to ε and that an estimate of µ that is not zero is due to this random variability. 

Inferential Errors from Hypothesis Testing 

How often will the estimate of µ be different from zero when Ho is true? We can answer 
this question by rerunning an experiment in which we know µ = 0 a million times, generate a 
histogram of the resulting distribution and then see how often (relative to 1 million) an estimated 
mean that is equal to or more extreme than our experimental estimate occurs. This is the 
frequency associated with finding our estimated value or a more extreme value when Ho is true. 

The good news is that we don’t have to conduct a million such experiments because someone 
else has already determined the distribution when µ = 0, is true. The frequency value associated 
with a test statistic as extreme or more extreme than the one observed is often referred to as a ‘p’ 
value. The smaller the p value, the more comfortable we should be in rejecting the null hypothesis 
in favor of an alternative hypothesis. Keep in mind that we can be wrong with making such a 
decision. In fact we are admitting that such a decision will be incorrect at a frequency of p. 
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Error Types 

Consider another simple example where we hypothesize that two genotypes have the same mean 
for some trait of interest. The difference between two genotypes is tested by Equation 19: 

 Formula for testing the difference between two genotypes. 

where: 
 = the ith and jth true genotypic effects on the trait of interest. 

Whether or not a decision based on observed data is correct depends on the true value of the 
difference between the means (Table 4). 

Table 4 Possible outcomes in testing the hypothesis that . Columns indicate the 
three possible true states. Rows indicate the three possible decisions made on the basis of 

estimates from measured data. 

Decision based on empirical data 
True Situation 

1. Correct decision Type I error Type III error 

2. Type II error Correct decision Type II error 

3. Type III error Type I error Correct decision 

A Type I error is committed if the null hypothesis is rejected when it is true (δij=0 and the 
hypothesis of equality is rejected). A Type II error is committed if the null hypothesis is accepted 
when it is really false (δij≠0 and the hypothesis of equality is not rejected). Type I error is also 
called “false positive”, and Type II error is also known as a “false negative.” A Type III error 
occurs if the first decision is made when the third decision should have been made. This error 
also occurs if the third decision was made when the first decision was correct. Type III errors are 
sometimes called reverse decisions. 

Significance Levels 

The probability (or frequency) of a Type I error is the level of significance, denoted by . 
The choice of  can be any desirable value between 0 and 1. 
For example, if a test is carried out at the 5% level,  is 0.05. 

If you carry out tests at 5% level you will reject 5% of the hypotheses you test when they are really 
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true. 
The rejection rate can be reduced by choosing a lower level of 
However, the choice of  will affect the frequency of Type II and Type III errors. 

A Type III error rate, γ, is the frequency of incorrect reverse decisions and is always less than 
α/2 even for the smallest magnitudes of the standardized true difference, δij/σd where σd is the 
parameter value of the standard error of the mean difference. Representative values of γ are 
shown below in Table 5. 

Table 5 Type III error rates, y, when the df associated with a t-test is 40. 

Standardized true difference 
Significance Level ( ) 

0.05 0.10 0.20 0.40 

0.3 0.0127 0.0271 0.0584 0.1283 

0.9 0.002 00068 0.0167 0.0438 

1.5 0.0005 0.0014 0.0039 0.019 

2.1 0.0001 0.0002 0.0008 0.0026 

2.7 0.0000 0.0000 0.0001 0.0005 

Power of the Test 

Lastly, consider the error that is committed if the null hypothesis is not rejected when it is truly 
false. This is also known as a Type II error, and the probability of this type of error is denoted by 
β. It is the frequency of failure to detect real differences and is also affected by both the choice of 
α and the magnitude of the standardized true difference (Table 6). 

Table 6 Type II error rates, ß, or the frequencies of failure to detect 
differences when the test of significance is based on 40 df. 

Standardized true difference 
Significance Level 

0.05 0.10 0.20 0.40 

0.3 0.941 0.886 0.781 0.579 

0.9 0.863 0.774 0.639 0.437 

1.5 0.697 0.571 0.419 0.248 

2.1 0.469 0.340 0.214 0.107 

2.7 0.251 0.158 0.085 0.035 

Notice that α + β ≠ 1.0. The power of the test is = 1 – β and is denoted π, thus β + π = 1.0. The power 
of a test is the probability of rejecting the null hypothesis when it is false. It can be increased 
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by decreasing either the value of α or decreasing the value of σd by increasing the number of 
replications per treatment or by improving the experimental design. 

Analysis of Variance 

Objectives 

Students will demonstrate the ability to conduct and interpret Analysis of Variance. 

Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots, and simple descriptive statistics such as the range 
(maximum, minimum), quartiles, and the sample average, median, mode. These exploratory data 
analysis (EDA) techniques should always be used prior to estimation and hypothesis testing. 
However, prior to conducting EDA, the phenotype should be modeled using the parameters in 
the experimental and sampling designs. 

Background 

The AOV has been the primary tool for testing hypotheses about parameters in linear models. 
The AOV was originally developed and introduced for analyses of quantitative genetic questions 
by R.A. Fisher (1925). Since its introduction, the assumptions underlying the AOV have guided 
development of sophisticated experimental designs, and with increasing computational 
capabilities the AOV has evolved to provide estimates of variance components from these 
designs. While the breadth and depth of experimental design and analyses of linear models are 
beyond the scope of this class, it is worth recalling the salient features of experimental design 
and their impact on inferences from the AOV. 

Experimental Designs consist of design structures, treatment structures, and allocation of these 
structures to experimental units. Typical design structures utilized by plant breeders include 
Randomized Complete Block, Lattice Incomplete Block and Augmented Designs. The primary 
treatment designs of interest of plant breeders involve allocation of genotypes to experimental 
units. This is accomplished primarily through mating, although with the emergence of 
biotechnologies, such as protoplast fusion, tissue culture and various transgenic technologies, 
there are many ways to allocate treatments (genotypes) to experimental units. Would you consider 
treatments from these technologies as fixed or random effects? Why? Experimental units can be 
split in both time and space, resulting in the ability to apply treatment and design structures to 
different sized experimental units. 
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Design Principles 

Design principles in allocation of treatment and design structures to experimental units include 
Randomization, Replication and Blocking. These are principles rather than rigid rules. As such, 
they provide flexibility in designing experiments to draw inferences about biological questions. 
Assuming that these principles are applied appropriately, experimental data can be used for 
obtaining unbiased estimates of treatment effects, variances, covariances, and even predict 
breeding values. 

Completely Random Design 

Let us imagine that we have two plant introduction accessions. We wish to evaluate whether 
these two accessions are unique with respect to yield. 

Assume that we have 10 plots available for purposes of testing the null hypothesis that there is no 
difference in their yield. Also, assume that we have enough seed to plant 200 seeds in each plot. 

Let us next assume that the 10 plots consist of two-row plots that are arranged in a 5×2 grid 
consisting of five ranges with 2 plots per range. We can randomly assign seed from each accession 
to the 10 plots. This would represent a Completely Random Design (CRD). Can you explain why? 

Fixed and Random Effects 

Prior to execution of the experiment, we want to model the phenotypic data using a linear 
function. In this case we would model the phenotypic data using Equation 20: 

 Linear model for phenotype. 

where: 
 = the yield of plot i, j, where i = 1, 2 for accession and j = 1, …, 5 for replicate, 

 = represents the mean of accession i, 
 = the error, ~ i.i.d. N(0, σ2). 

It is important to get in the habit of recognizing whether the parameters of the model are 
considered random or fixed effects. 

In this first model, since we selected the two accessions, rather than sampled them from some 
population, we should consider them to be fixed effects. The parameter εi,j representing the 
residual or error in the model is based on a sample of plots to which experimental units are 
assigned, so εi,j is considered a random effect. 
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AOV Based on Yield 

Next, let us say that we evaluate the plots for yield (bushels per acre) as well as stand counts 
(plants per plot) at the time of harvest. The resulting data might look something like in Table7. 

Table 7 Table 1 Yield (t per ha) as well as stand 
counts (plants per plot). 

n/a PI accession 1 PI accession 2 

Block (t/ha) (plants/plot) (t/ha) (plants/plot) 

1 1.69 91 1.88 102 

2 1.95 122 1.82 89 

3 2.20 143 2.01 139 

4 2.13 145 2.01 147 

5 1.76 110 1.95 112 

If we conduct an AOV based on yield using the model for a CRD, we will generate a table that 
looks something like Table 8. 

Table 8 ANOVA outline. 

Source df MS F Prob 

Accession 1 n/a n/a n/a 

Residual 8 n/a n/a n/a 

Blocking Ranges 

Suppose that we suspect a gradient for some soil factor (moisture, organic matter, fertility, etc.) 
across the ranges. In order to remove the effect of the gradient on our comparisons between the 
two accessions, we should probably ‘block’ each range as a factor in our model. 

Let us further assume that we block the accession ‘treatments’ into five blocks consisting of 
two plots each. If we randomly group pairs of the accessions into 5 sets, next randomly assign 
each set to a range, and third, randomly assign each accession within a set to the plots within 
ranges, we will have a randomized complete block design (RCBD) that can be modeled as 

 where the definition of parameters is the same as the CRD model, but 
with the added term for a blocking factor. 
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Mixed Linear Model 

In this second model, the accessions are selected so we should consider them to be fixed effect 
parameters. Although the block parameter represents a sample of many possible blocks in the 
field trial, there are only a few blocks that represent a “nuisance” source of variability, so we can 
treat them as a fixed effect, while the parameter εij represents the residual or error in the model 
which is based on a sample of plots to which experimental units are assigned. 

Thus εij is considered random effects where εij ~ i.i.d. N(0, σe
2), and the model is considered a 

mixed linear model. 

Table 9 ANOVA outline for mixed model. 

Source df MS F Prob 

Block 4 n/a n/a n/a 

Accession 1 n/a n/a n/a 

Residual 4 n/a n/a n/a 

Regression and Prediction 

Objectives 

Demonstrate ability to conduct and interpret regression analyses. 

Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots, and simple descriptive statistics such as the range 
(maximum, minimum), quartiles, and the sample average, median, mode. These exploratory data 
analysis (EDA) techniques should always be used prior to estimation and hypothesis testing. 
However, prior to conducting EDA, the phenotype should be modeled using the parameters in 
the experimental and sampling designs. 

Linear Regression 

Historically, linear (and non-linear) regression has not been utilized extensively by plant breeders, 
although it provides the conceptual foundation for understanding additive genetic models and 
analysis of covariance. Recently, with the emergence of molecular marker technologies, the 
importance of linear regression has manifested itself in the development of predictive methods 
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such as Genomic Prediction. Linear regression is an approach to modeling the relationship 
between a scalar dependent variable Y (e.g., harvestable grain yield per unit of land) and one or 
more explanatory variables (e.g., breeding values of lines involved in crosses) denoted by X. 

Basic Assumptions 

In linear regression, the phenotype is modeled using a linear function. There are four basic 
assumptions made about the relationship between a response variable Y and an explanatory 
variable X. 

1. All Y values are from independent experimental or sample units. 
2. For each value of X, the possible Y values are distributed as normal random variables. 
3. The normal distribution for Y values corresponding to a particular value of X has a mean 

μ{Y|X} that lies on a line (Equation 21): 

µ

 Formula for estimating the mean. 

where: 
 = the intercept and represents the mean of the Y values when X = 0, 
 = the slope of the line, that is, the change in the mean of Y per unit increase in X. 

4. The distribution of Y values corresponding to a particular value of X has standard deviation 
σ {Y|X). The standard deviation is usually assumed to be the same for all values of X so that 
we may write σ{Y|X}=σ. Violation of the last assumption is typical in plant breeding data and 
the development of methods to account for unequal variances is an area of important 
research. 

Simple Linear Regression 

Suppose we have n observations of a response variable Y and an explanatory variable X: (X1,Y1), . 
. . , (Xn,Yn). The model can be rewritten as in Equation 22: 

 Linear model for phenotype. 

where: 
 are as defined previously, 
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for i = 1, . . . , n experimental units. ei , . . . , en are assumed to be independent normal random 
variables with mean 0 and standard deviation σ{Y|X}=σ. Thus, least-squares estimates of the Yi 
values are obtained using Equation 23: 

 Least squares estimates model for Y values. 

where: 
 are as defined previously. 

The residual ei (e1, . . . , en) can be calculated as represented in Equation 24: 

 Formula for estimating residuals. 

where: 
 are as defined previously. 

Parameter Estimates 

The estimators for parameters ,  , and σ are 
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Fig. 10 Estimator plot. 

Prediction 

Notice that Equation 23, , provides a predicted value of Yi. Imagine that the xi 

(i=1, …, n) values are a genotypic index for cultivar/individual i, such as the sum of all allelic values 
(+1 or -1) at quantitative trait loci throughout the genome. Some cultivars could have 60 positive 
allelic values and no negative allelic values, while other cultivars could have a genotypic index 
of -20 (see Figure 10). If the positive genotypic index values are associated with high phenotypic 
values, such as in the figure, then we will have a strong positive linear relationship between the 
genotypic index and the phenotypes. A strong linear relationship can enable the plant breeder 
to predict phenotypes without having to spend resources on growing cultivars. The stronger the 
linear relationship is between the genotypic index and the phenotype (less variability around the 
line), the better the ability to predict. This concept represents the foundation for what is widely 
referred to as Genomic Prediction. 

There are a number of details about how allelic values are estimated and combined into genotypic 
indices. The foundational concepts that address these details are covered in the Introduction to 
Quantitative Genetics section. 

Analysis of Covariance 

Objective: Demonstrate ability to conduct and interpret Analysis of Covariance 
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Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots, and simple descriptive statistics such as the range 
(maximum, minimum), quartiles, and the sample average, median, mode. These exploratory data 
analysis (EDA) techniques should always be used prior to estimation and hypothesis testing. 
However, prior to conducting EDA, the phenotype should be modeled using the parameters in 
the experimental and sampling designs. 

AOC is typically applied when there is a need to adjust results for variables that cannot be 
controlled by the experimenter. For example, imagine that we have two plant introduction 
accessions and we wish to evaluate whether these two accessions are unique with respect to yield. 
Also, imagine that germination rates for each accession is different but unknown, especially 
under field conditions in a new environment. We could decide to overplant each plot and reduce 
the number of plants per plot to a constant number equal to a stand count that is typical under 
current Agronomic practices. However, such an approach will be labor-intensive and not as 
informative as simply adjusting plot yields for stand counts. 

Example 

Assume that we have 10 plots available for purposes of testing the null hypothesis that there is no 
difference in their yield. Also, assume that we have enough seed to plant 200 seeds in each plot, 
although current agronomic practices are more closely aligned with stands of about 125 plants 
per plot. Let us next assume that the 10 plots consist of two-row plots that are arranged in a 5×2 
grid consisting of five ranges with 2 plots per range. Suppose that we suspect a gradient of some 
soil factor (moisture, organic matter, fertility, etc.) across the ranges. In order to remove the effect 
of the gradient on our comparisons between the two accessions we should probably ‘block’ each 
range as a factor in our model. If we randomly group pairs of the accessions into 5 sets, next 
randomly assign each set to a range and third randomly assign each accession within a set to 
the plots within ranges, we will have a RCBD. At the time of harvest, we evaluate the plots for 
yield (bushels per acre) as well as stand counts (plants per plot). The resulting data are arranged 
in Table 10. 
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Table 10 Data from RCBD plot. 

n/a PI accession 1 PI accession 2 

Block (t/ha) (plants/plot) (t/ha) (plats/plot) 

1 1.69 91 1.88 102 

2 1.95 122 1.82 89 

3 2.20 143 2.01 139 

4 2.13 145 2.01 147 

5 1.76 110 1.95 112 

Model Equation 

If we model the yield data as Yij = bj + µi+ εij , where Yij is the yield of plot ij , µi represents the 
mean of accession i, bj represents the jth block in which each pair of accessions are grown and εij 
~ i.i.d. N(0,σ2), the resulting analysis revealed that the variability between accessions is not much 
greater than the residual variability. We might interpret this to mean that there is no difference 
in yield between the two accessions. However, our real interest is in whether there is a difference 
between the accessions at the same stand counts. A more appropriate model for the question of 
interest is as in Equation 25: 

 Formula for calculating phenotype in a plot. 

where: 
 = intercept for accession i, 
 = slope of accession i, 

 = the jth stand count in accession i (i = 1, 2,) 
 = random effect parameter. 

The model has two intercepts, denoted αi (i = 1, 2) for each of the accessions, and two slopes 
denoted ßi (i = 1, 2), for each of the accessions. Xij is the jth stand count in accession i (i = 1, 2). 
The model also has random effects parameters denoted by bj and εi,j where bj~ i.i.d. N(0,σb

2) and 
εi,j ~ i.i.d. N(0, σe

2). The resulting analyses of variability associated with each of the parameters 
is known as Analysis of Covariance, and can be thought of as an approach that takes advantage 
of both regression and ANOVA, i.e., an AOC model includes parameters representing both 
regression and factor variables. The result of the estimation procedure will enable us to evaluate 
whether the accessions are equal at stand counts of interest. In other words it will be possible 
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to adjust yield values to various stand counts of interest. As a matter of ethics in science, the 
variable stand count of interest needs to be modeled prior to conducting the field trial. 

Computational Considerations 

Key Concepts 

As long as data are balanced all computational algorithms will provide the same estimates of 
variance components. 

• When data are not balanced, either by design or accident, simple algorithms implemented 
in many widely used software packages (EXCEL, JMP for exampes) will not provide correct 
estimates of variance components. 

Statistical Inference 

The purpose of statistical inference is to interpret the data we obtain from sampling or designed 
experiments. Preliminary insights come from graphical data summaries such as bar charts, 
histograms, box plots, stem-leaf plots and simple descriptive statistics such as the range 
(maximum, minimum), quartiles, and the sample average, median, mode. These exploratory data 
analysis (EDA) techniques should always be used prior to estimation and hypothesis testing. 
However, prior to conducting EDA, the phenotype should be modeled using the parameters in 
the experimental and sampling designs. 

Computational Methods 

Most plant breeding data are obtained using a limited number of field plot designs consisting 
of lines (cultivars, hybrids, synthetics, etc.), environments and occasionally complete blocks, but 
usually incomplete blocks, within environments. Further, numbers of observations per source 
of variation are seldom balanced; even if designed for balance, some plots are lost during the 
course of a growing season. Thus, while the algorithm for obtaining EMS (described in the 
section Statistical Inference: Analysis of Variance) is useful for learning basic concepts, it is of 
little practical use for most plant breeding projects. Just as the estimates of means need to be 
adjusted through use of lsmeans, advanced computational methods are needed to obtain accurate 
estimates of variance components of the linear model when data are obtained from unbalanced 
conditions. The computational methods are affected by fixed effects, random effects or a mixture 
of both types of effects. There are three primary computation methods for estimating variance 
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components: Method of Moments (MM), Maximum Likelihood (ML), and Restricted Maximum 
Likelihood (REML). 

Regression, Anova, and AOC 

Computation of the MM estimators of variance components is essentially a matter of equating 
observed mean squares, calculated using the sums of squared deviations and cross products, 
with the expected mean squares, as demonstrated by Lorenzen and Anderson (1993, Design of 
Experiments: A No-Name Approach. p 71-72). These are appropriate if the data are balanced. 
Most advanced statistical software packages, e.g., SAS and R, calculate the sums of squares 
and cross products for the MM using the MIVQUE(0) algorithm (Minimum Variance Quadratic 
Unbiased Estimator, with no weighting for random effects). 

Computation of ML and REML are derived from MIVQUE(0); both use MIVQUE(0) estimates as 
starting points in an iterative algorithm that maximizes the likelihood function, assuming that 
the random effects are distributed as random normal variables. The difference between ML and 
REML is that the likelihood function in REML is maximized only for the random effects, i.e., the 
fixed effects are removed from the likelihood function. For a model consisting of only random 
effects, both ML and REML will provide the same results. Indeed, for completely balanced data 
from random effects models, all three computational methods provide the same results. When 
dealing with unbalanced data or mixed effect models, REML has been shown to be the best 
computational method. 

Further Considerations 

As a practical matter, if your data is missing less than 10% of the experimental units within 
any environment, the MM approach will provide estimates that are almost as good as REML. 
Otherwise, the estimates should be obtained with mixed model equations (MME) and a REML 
algorithm. We encourage the use of R or SAS software for conducting data analyses. R is free, 
while the SAS license fees pay for more rigorous quality assurance. 

Matrix Algebra 

A matrix is a collection of numerical values arranged in rows and columns. Herein, the elements 
of a matrix are enclosed in brackets. For example, 
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. 

is a matrix with 4 elements arranged in 2 rows and two columns. 

Matrices with more than two or more rows and columns are denoted with upper case bold letters. 
Vectors are a special type of matrix with only one row or one column. For example, 

. 

Special Kinds of Matrices 

Vector matrices are denoted with lower case bold italicized letters. A matrix consisting of only 
one row and one column is referred to as a scalar matrix. A square matrix has the same number 
of rows and columns. A diagonal matrix is a square matrix with off-diagonal elements equal to 0. 
An identity matrix is a diagonal matrix with diagonal elements = 1. The identity matrix is almost 
always denoted I. 

Operations 

Matrices must be conformable, i.e., matrix operations have requirements on the numbers of rows 
and columns. 

It is possible to add or subtract two matrices, but only if they have the same numbers of rows and 
columns. For example, 

. 

It is possible to multiply a matrix by a scalar value (say ‘v’) by simply multiplying all elements of 
the matrix by the scalar value, v. Thus, 
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. 

Multiplying Vectors 

It is possible to multiply two vectors, but only if 1) one of the vectors is a row vector, 2) the second 
is a column vector, 3) the row vector has as many elements as the column vector. For example, 

. 

The operation of vector multiplication in the first instance indicates that we have a 1×3 matrix 
multiplied by a 3×1 matrix. The way we carry out the vector multiplication is to multiply the 
elements from each matrix in a pairwise manner, then sum the results of all 3 pairs: 

. 

Multiplying Vectors In Reverse 

We could also apply the rule of multiplying and summing pairs of elements to the reverse 
arrangement of these two vectors: 

. 

Notice that the order of arrangement of vectors matters. Likewise, the arrangement of matrices 
that are to be multiplied matters. Virtually all types of matrix multiplication involve the 
multiplication of a row vector by a column vector. In essence, we partition each matrix into a set 
of row and column vectors, then apply the rules of vector multiplication. 

Matrix Multiplication 

Let us consider C=AB. cij = ai.bj , where ai is the ith row vector of A and bj is the jth column vector 
of B. For example, 
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. 

Notice that matrix multiplication requires that the first matrix must have as many columns as the 
second matrix has rows. Thus, AB is usually not equal to BA. Indeed, while AB may be possible, 
BA may not. Lastly verify for yourself that IA, IB and Ix = A, B and x respectively. 

Additional Important Operations 

The transpose of a matrix, denoted as A’ (or At or AT) is a useful operation in which the first row 
of a matrix becomes the first column of its transpose, while the second, third, … etc rows become 
the second, third, … etc columns of its transpose. For example, 

. 

The inverse of a matrix is best understood by recalling that in scalar algebra the inverse of a 
number multiplied by the number will be = 1. Thus the inverse of x is x-1. In matrix algebra 
the inverse of a matrix is a matrix when multiplied by the original matrix is I. That is AA-1 = 
A-1A= I. Only square matrices will have an inverse, although not all square matrices will have an 
inverse. Bernardo describes how to calculate the inverse of a simple 2×2 matrix and it is possible 
to calculate inverse matrices consisting of 3×3 elements, but calculations of inverses of larger 
matrices are better left to software. 

PLANT BREEDING BASICS  |  241



References 

Bernardo, R. 1996. Best linear unbiased prediction of maize single-cross performance. Crop Sci 
36:50–56. 

Bernardo, R. 2002. Breeding for quantitative traits in plants. Stemma Press. 

Comstock, R. E. 1978. Quantitative genetics in maize breeding. In: Walden DB (ed) Maize 
breeding and genetics. Wiley, New York, p 191–206. 

Christensen, R. 1997. Log-Linear Models and Logistic Regression (2nd ed.) New York: Springer-
Verlag. 

Crossa, J., R. C. Yang, P. and Cornelius. L. 2004. Studying crossover genotype × environment 
interaction using linear-bilinear models and mixed models. J. Agric. Biol. Environ. Stat. 9 (3):362– 
80. 

Fehr, W. R. 1991. Principles of cultivar development vol. 1: Theory and technique. MacMillan 
Publishing Company, USA. 

Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian 
inheritance. Trans R Soc Edinb 52:399–433. 

Fisher, R. A. 1925. Theory of Statistical Estimation. Oliver & Boyd, Edinburgh. 

Fisher, R. A. 1928. Statistical methods for research workers. Scotland: Oliver and Boyd. 

Fisher, R. A. 1935. The Design of Experiments (8th ed., 1966), New York: Hafner Press. 

Hayes, H. K., and F. R. Immer, 1942. Methods Of Plant Breeding. McGraw-Hill publications in 
the agricultural sciences. 

Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. 
Biometrics 31:423–447. 

Lorenzen, T., and V. Anderson. 1993. Design of Experiments: A No-Name Approach. p 71-72) 

Lush, J. L. 1948.The genetics of populations. Mimeographed notes, Iowa State College, Ames, 
Iowa. 

McCullagh, P,. and, J. A. Nelder. 1989. Generalized Linear Models, volume 37 of Monographs on 
Statistics and Applied Probability. Chapman and Hall, London, 2nd edition 

242  |  PLANT BREEDING BASICS



Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic values using 
genome-wide dense marker maps. Genetics 157: 1819–1829. 

Piepho, H. P. 2009. Data Transformation in Statistical Analysis of Field Trials with Changing 
Treatment Variance. Agron. J. 101:865-869. 

 

How to cite this module: Beavis, W. and A. A. Mahama 2023. Plant Breeding Basics. In W. P. Suza, & 
K. R. Lamkey (Eds.), Quantitative Genetics for Plant Breeding. Iowa State University Digital Press. 

PLANT BREEDING BASICS  |  243



Applied Learning Activities 

The following downloadable Applied Learning Activities (ALAs) and associated files are aligned 
with the chapters linked below: 

Chapter 1 

• Disequilibrium [PDF] 
• Ideal Population_HWE [PDF] 
• Fate of a Rare Allele [XLSX] 

Chapter 2 

• Gametic and Linkage D_Likelihood [PDF] 
• Gametic and Linkage D [PDF] 
• Gamete and LD Expected frequencies with linkage and selfing [XLSX] 

Chapter 3 

• Full-sib Mating [PDF] 
• Introgression [PDF] 
• Self-pollination [PDF] 
• Example – Self-pollination with Coefficient of Inbreeding [XLSX] 

Chapter 4 

• Relationship-Coefficient_Solve-Example [PDF] 
◦ Eval Dist Metrics [XLSX 

• Cluster Analysis [PDF] 
◦ ALA 4.6_DS [CSV] 
◦ Cluster Analysis [TXT] (For use as .R file) 
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https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Population-Genetics-Foundations-Disequilibrium-ALA-1.pdf
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Population-Genetics-Foundations-Ideal-Population-HWE-ALA.pdf
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/QG_Mod1_ALA-1.5-fate-of-a-rare-allele.xlsx
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Population-Genetics-Gametic-and-Linkage-D-Likelihood-ALA-1.pdf
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Population-Genetics-Gametic-and-Linkage-D-ALA-1.pdf
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Gamete-and-LD-Expected-frequencies-with-linkage-and-selfing.xlsx
https://iastate.pressbooks.pub/app/uploads/sites/102/2023/10/Coefficient-of-inbreeding-%E2%80%93-Full-sib-Mating-ALA.pdf
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