Simplifying Fractions Example
[latex]\frac{60}{126}=2^{2}\cdot 3\cdot \frac{5}{2}\cdot 3^{2}\cdot 7=\frac{10}{21}[/latex]
Kendra Meade and Anthony Assibi Mahama
Various terms are used in carrying out algebraic operations. A good understanding of these enables calculations to be carried out correctly. Some common terms are shown in Table 1.
Vocabulary | Definition |
---|---|
Variable | A letter that can be replaced by any number |
Constant | A capital letter that represents a fixed number |
Expression | Consists of variables, numbers and operation symbols (ex: [latex]\small{2x - 5 + 3y^{2} - \frac{x}{3}}[/latex]) |
Equation | When “=” is between two algebraic expressions (equation can be true [latex]\small{x + 2 = x + 2}[/latex], false [latex]\small{x+2 = x + 3}[/latex] or neither [latex]\small{\textrm{or 3x -9 = 4x - 14}}[/latex]) |
Solution | A value replacing the variable to make the equation true ([latex]\small{x = 5}[/latex] for [latex]\small{3x - 9 = 4x - 14}[/latex]) |
Solved | Having found the values that make the equation true |
Translate | To convert words to an algebraic expression or equation |
Substitute | Replacing a variable with a given number |
Evaluate | To find a solution |
Factor | Multiple or Product |
Factoring | Reversing distributive law and turning it into the factors (multiples) |
Equivalent | Expressions that, when evaluated, produce the same value |
Terms | A number, var (variable), or a product/quotient of numbers and/or variables separated by + or – signs (Expression [latex]\small{5 - 3xy - \normalsize \frac{2x}{5}}[/latex] contains three terms) |
Fraction notation | A way of showing the division of two numbers (Numerator: top, Denominator: bottom) |
Undefined | [latex]\small{ \frac{a}{0}}[/latex]: Division by zero is undefined — There is no solution |
Zero fraction | [latex]\small{ \frac{0}{a}}[/latex]: Zero in the numerator makes fraction equal to zero |
Fraction notation for 1 | Any nonzero number divided by itself is 1: [latex]\small{ \frac{a}{a} = 1}[/latex] |
Reciprocal | Multiplicative inverse: if [latex]\small{ a\neq 0}[/latex], [latex]\small{ \frac{a\cdot 1}{a}=\frac{a}{b}\cdot \frac{b}{a} =1}[/latex] Zero has no reciprocals. The reciprocal of a is [latex]\small{a=\frac{1}{a}}[/latex]. |
Opposite | Additive inverse: opposite of “a” is “-a” and [latex]\small{a+(-a)=0}[/latex]. |
Prime number | A natural number that is divisible by only two different factors: itself and 1 |
Inequality | A statement about the relative size of two objects. Indicated by <, >, ≪, ≫ |
Law | Definition |
Commutative | For any real a and b, [latex]\small{a+b=b+a}[/latex], and [latex]\small{ a \cdot b = b \cdot a}[/latex] |
Associative | For any real a, b, and c, [latex]\small{a\cdot (b+c)=a \cdot b + a \cdot c}[/latex] |
Distributive | For any real a, b and c, [latex]\small{ \textrm{a + (b + c)}=(a + b) + c, {a\cdot (b\cdot c)=(a\cdot b)\cdot c}}[/latex] |
[latex]\frac{60}{126}=2^{2}\cdot 3\cdot \frac{5}{2}\cdot 3^{2}\cdot 7=\frac{10}{21}[/latex]
[latex]\frac{7}{12}\cdot \frac{30}{21}=\frac{7}{2^{2}}\cdot 3\cdot 2\cdot 3\cdot \frac{5}{3}=\frac{5}{6}[/latex]
[latex]\frac{4}{18}\div\frac{10}{21}=\frac{4}{18}\cdot {\frac{21}{10}}=\frac{2^{2}}{2}\cdot 3^{2}\cdot 3\cdot \frac{7}{2}\cdot 5=\frac{1}{3}\cdot \frac{7}{5}=\frac{7}{15}[/latex]
[latex]\frac{2}{14}+\frac{5}{14}=\frac{7}{14}=\frac{7}{2}\cdot 7=\frac{1}{2}[/latex]
[latex]\frac{3}{2}-\frac{5}{6}=\frac{3}{2}-\frac{5}{2}\cdot 3=\frac{3}{2}\cdot \frac{3}{3}-\frac{5}{2}\cdot 3=9-\frac{5}{2}\cdot 3=\frac{4}{2}\cdot 3=\frac{2^{2}}{2}\cdot 3=\frac{2}{3}[/latex]
[latex]\frac{9}{42}-\frac{3}{15}=\frac{9}{2}\cdot 3\cdot 7-\frac{3}{3}\cdot 5=\frac{9}{2}\cdot 3\cdot 7\cdot \frac{5}{5}-\frac{3}{3}\cdot 5\cdot 2\cdot \frac{7}{2}\cdot 7=45-\frac{42}{2}\cdot 3\cdot 5\cdot 7=32\cdot 3\cdot 5\cdot 7=\frac{1}{2}\cdot 5\cdot 7=\frac{1}{70}[/latex]
Simplify each radical by removing perfect square roots out of the radical to get like radicals, then combine the number of like radicals.
[latex]\sqrt[n]{a}\cdot\sqrt[n]{b} =\sqrt[n]{ab}[/latex]
[latex]\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}[/latex]
If no n is given, assume that n is 2, and a square root is required.
Used to indicate that a value can be of either sign. Often used to construct confidence intervals.
[latex]p\pm x + y = p +x + y, \textrm{or p - x + y}[/latex]
Transformation | Reciprocal of Transformation |
---|---|
Sine (sin) | Cosecant (csc or cosec) or Arcsine (arcsin) |
Cosine (cos) | Secant (sec) or Arccosine (arccos) |
Tangent (tan) | Cotangent (cot) or Arctangent (arctan) |
Arcsine (arcsin) | Sine (sin) |
Natural logarithm (in or log or loge) | Exponential (exp or en) |
Summation (S) signifies that a series of terms should be added together.
Given a series of numbers [latex]x_1[/latex], [latex]x_2[/latex], [latex]x_3[/latex] … [latex]x_n[/latex]
Sum all [latex]x_i[/latex] starting at [latex]i=1[/latex] through [latex]i=n[/latex].
[latex]\sum_{i=1}^{n}x^{i}=x_{1}+x_{2}+x_{3}+x_{4} + ... + x_{n}[/latex].
[latex]\textrm{Equation 1}[/latex] Equation for summing series of values.
How to cite this chapter: Kendra Meade and A. A. Mahama. 2023. Algebra Review Guide. In W. P. Suza, & K. R. Lamkey (Eds.), Quantitative Methods. Iowa State University Digital Press.